CS412: Review Notes

Mridul Aanjaneya

April 30, 2015

Arithmetic operations are subject to roundoff error when performed on a finite precision computer. In order to perform an operation x op y on the *real* numbers x and y, we deviate from the analytic result when discretizing those values to machine precision as well as when we store the resulting value.

Let \bar{x} denote the discretized, floating point version of x that is stored on the computer. You may assume that

$$\bar{x} = (1 + \varepsilon)x$$

where ε is bounded as $0 \le |\varepsilon| < \varepsilon_{\max}$ where $\varepsilon_{\max} \ll 1$ is the machine roundoff precision.

Assume that the result of the arithmetic operation between two floating point numbers \bar{x} and \bar{y} is computed exactly, but when stored on the computer it is once again subject to roundoff error as

$$\overline{\bar{x} \text{ op } \bar{y}} = (1 + \varepsilon')(\bar{x} \text{ op } \bar{y})$$

where the roundoff error obeys the same bounds $0 \le |\varepsilon'| < \varepsilon_{\max}$.

The relative error of a computation is defined as

$$E = \left| \frac{\text{Computed Result} - \text{Analytic Result}}{\text{Analytic Result}} \right|$$

Using this relation, we can provide a bound for various arithmetic operations, or prove that the relative error is unbounded. For the following derivations, we use the lemma: If $0 \leq |\varepsilon_1|, |\varepsilon_2|, \ldots, |\varepsilon_k| < \varepsilon_{\max}$, then there exists an $\varepsilon \in [0, \varepsilon_{\max})$ such that $(1 + \varepsilon_1)(1 + \varepsilon_2) \ldots (1 + \varepsilon_k) = (1 + \varepsilon)^k$, which holds by virtue of the intermediate mean value theorem.

1. Subtraction: We have $\bar{x} = (1 + \varepsilon_1)x$ and $\bar{y} = (1 + \varepsilon_2)y$. We will show that there is no bound on the relative error. Consider $\bar{x} - \bar{y} = (1 + \varepsilon_1)x - (1 + \varepsilon_2)y$. Let $x = a + \theta$ and y = a so $x - y = \theta$. Then

$$E = \left| \frac{\overline{x} - \overline{y} - (x - y)}{x - y} \right|$$

= $\left| \frac{\theta(1 + \varepsilon_3) + a(\varepsilon_1 - \varepsilon_2)(1 + \varepsilon_3) + \theta\varepsilon_1(1 + \varepsilon_3) - \theta}{\theta} \right|$
= $\left| \varepsilon_3 + \varepsilon_1(1 + \varepsilon_3) + \frac{a}{\theta}(\varepsilon_1 - \varepsilon_2)(1 + \varepsilon_3) \right|$

which becomes unbounded as $\theta \to 0$.

2. Addition:

$$E_{+} = \left| \frac{\overline{x} + \overline{y} - (x+y)}{x+y} \right| = \left| \frac{(1+\varepsilon_3)\{(1+\varepsilon_1)x + (1+\varepsilon_2)y\} - (x+y)}{x+y} \right|$$
$$= \left| \frac{(1+\varepsilon_3)(1+\varepsilon_1)x + (1+\varepsilon_3)(1+\varepsilon_2)y - (x+y)}{x+y} \right|$$

From the above lemma, $(1 + \varepsilon_3)(1 + \varepsilon_1) = (1 + \varepsilon_4)^2$ and $(1 + \varepsilon_3)(1 + \varepsilon_2) = (1 + \varepsilon_5)^2$. Without loss of generality, assume $\varepsilon_4 = \max\{\varepsilon_4, \varepsilon_5\}$. Then,

$$E_+ \le \left| \frac{(1 + \varepsilon_4)^2 (x + y) - (x + y)}{x + y} \right| = |2\varepsilon_4 + O(\varepsilon_{\max}^2)| = O(|\varepsilon_{\max}|)$$

3. Multiplication:

$$E_{\times} = \left| \frac{\overline{x} \cdot \overline{y} - xy}{xy} \right| = \left| \frac{xy(1 + \varepsilon_1)(1 + \varepsilon_2)(1 + \varepsilon_3) - xy}{xy} \right|$$

From the above lemma, we can write $(1 + \varepsilon_1)(1 + \varepsilon_2)(1 + \varepsilon_3) = (1 + \varepsilon_4)^3$. This gives,

$$E_{\times} = |(1 + \varepsilon_4)^3 - 1| = |3\varepsilon_4 + O(\varepsilon_{\max}^2)| = O(|\varepsilon_{\max}|)$$

4. Division:

$$E_{\div} = \left| \frac{\overline{x}/\overline{y} - x/y}{x/y} \right| = \left| \frac{(x/y)\frac{(1+\varepsilon_1)(1+\varepsilon_3)}{1+\varepsilon_2} - x/y}{x/y} \right| = \left| \frac{(1+\varepsilon_1)(1+\varepsilon_3)}{1+\varepsilon_2} - 1 \right|$$

Using the geometric series, $\frac{1}{1+\varepsilon_2} = 1 - \varepsilon_2 + O(\varepsilon_{\max}^2)$ gives

$$\begin{split} E_{\div} &= |(1+\varepsilon_1)(1+\varepsilon_3)\{(1-\varepsilon_2) + O(\varepsilon_{\max}^2)\} - 1| = |(1+\varepsilon_4)^3 - 1 + O(\varepsilon_{\max}^2)| \\ &= |3\varepsilon_4 + O(\varepsilon_{\max}^2)| = O(|\varepsilon_{\max}|) \end{split}$$