CS412: Review Notes

Mridul Aanjaneya

April 30, 2015

Arithmetic operations are subject to roundoff error when performed on a finite precision computer. In order to perform an operation x op y on the real numbers x and y, we deviate from the analytic result when discretizing those values to machine precision as well as when we store the resulting value.

Let \bar{x} denote the discretized, floating point version of x that is stored on the computer. You may assume that

$$
\bar{x}=(1+\varepsilon) x
$$

where ε is bounded as $0 \leq|\varepsilon|<\varepsilon_{\max }$ where $\varepsilon_{\max } \ll 1$ is the machine roundoff precision.

Assume that the result of the arithmetic operation between two floating point numbers \bar{x} and \bar{y} is computed exactly, but when stored on the computer it is once again subject to roundoff error as

$$
\overline{\bar{x}} \text { op } \bar{y}=\left(1+\varepsilon^{\prime}\right)(\bar{x} \text { op } \bar{y})
$$

where the roundoff error obeys the same bounds $0 \leq\left|\varepsilon^{\prime}\right|<\varepsilon_{\text {max }}$.
The relative error of a computation is defined as

$$
E=\left|\frac{\text { Computed Result }- \text { Analytic Result }}{\text { Analytic Result }}\right|
$$

Using this relation, we can provide a bound for various arithmetic operations, or prove that the relative error is unbounded. For the following derivations, we use the lemma: If $0 \leq\left|\varepsilon_{1}\right|,\left|\varepsilon_{2}\right|, \ldots,\left|\varepsilon_{k}\right|<\varepsilon_{\max }$, then there exists an $\varepsilon \in\left[0, \varepsilon_{\max }\right)$ such that $\left(1+\varepsilon_{1}\right)\left(1+\varepsilon_{2}\right) \ldots\left(1+\varepsilon_{k}\right)=(1+\varepsilon)^{k}$, which holds by virtue of the intermediate mean value theorem.

1. Subtraction: We have $\bar{x}=\left(1+\varepsilon_{1}\right) x$ and $\bar{y}=\left(1+\varepsilon_{2}\right) y$. We will show that there is no bound on the relative error. Consider $\bar{x}-\bar{y}=\left(1+\varepsilon_{1}\right) x-$ $\left(1+\varepsilon_{2}\right) y$. Let $x=a+\theta$ and $y=a$ so $x-y=\theta$. Then

$$
\begin{aligned}
E & =\left|\frac{\overline{\bar{x}-\bar{y}}-(x-y)}{x-y}\right| \\
& =\left|\frac{\theta\left(1+\varepsilon_{3}\right)+a\left(\varepsilon_{1}-\varepsilon_{2}\right)\left(1+\varepsilon_{3}\right)+\theta \varepsilon_{1}\left(1+\varepsilon_{3}\right)-\theta}{\theta}\right| \\
& =\left|\varepsilon_{3}+\varepsilon_{1}\left(1+\varepsilon_{3}\right)+\frac{a}{\theta}\left(\varepsilon_{1}-\varepsilon_{2}\right)\left(1+\varepsilon_{3}\right)\right|
\end{aligned}
$$

which becomes unbounded as $\theta \rightarrow 0$.

2. Addition:

$$
\begin{aligned}
E_{+} & =\left|\frac{\overline{\bar{x}+\bar{y}}-(x+y)}{x+y}\right|=\left|\frac{\left(1+\varepsilon_{3}\right)\left\{\left(1+\varepsilon_{1}\right) x+\left(1+\varepsilon_{2}\right) y\right\}-(x+y)}{x+y}\right| \\
& =\left|\frac{\left(1+\varepsilon_{3}\right)\left(1+\varepsilon_{1}\right) x+\left(1+\varepsilon_{3}\right)\left(1+\varepsilon_{2}\right) y-(x+y)}{x+y}\right|
\end{aligned}
$$

From the above lemma, $\left(1+\varepsilon_{3}\right)\left(1+\varepsilon_{1}\right)=\left(1+\varepsilon_{4}\right)^{2}$ and $\left(1+\varepsilon_{3}\right)\left(1+\varepsilon_{2}\right)=$ $\left(1+\varepsilon_{5}\right)^{2}$. Without loss of generality, assume $\varepsilon_{4}=\max \left\{\varepsilon_{4}, \varepsilon_{5}\right\}$. Then,

$$
E_{+} \leq\left|\frac{\left(1+\varepsilon_{4}\right)^{2}(x+y)-(x+y)}{x+y}\right|=\left|2 \varepsilon_{4}+O\left(\varepsilon_{\max }^{2}\right)\right|=O\left(\left|\varepsilon_{\max }\right|\right)
$$

3. Multiplication:

$$
E_{\times}=\left|\frac{\bar{x} \cdot \bar{y}-x y}{x y}\right|=\left|\frac{x y\left(1+\varepsilon_{1}\right)\left(1+\varepsilon_{2}\right)\left(1+\varepsilon_{3}\right)-x y}{x y}\right|
$$

From the above lemma, we can write $\left(1+\varepsilon_{1}\right)\left(1+\varepsilon_{2}\right)\left(1+\varepsilon_{3}\right)=\left(1+\varepsilon_{4}\right)^{3}$.
This gives,

$$
E_{\times}=\left|\left(1+\varepsilon_{4}\right)^{3}-1\right|=\left|3 \varepsilon_{4}+O\left(\varepsilon_{\max }^{2}\right)\right|=O\left(\left|\varepsilon_{\max }\right|\right)
$$

4. Division:

$$
E_{\div} \div\left|\frac{\overline{\bar{x}} / \bar{y}-x / y}{x / y}\right|=\left|\frac{(x / y) \frac{\left(1+\varepsilon_{1}\right)\left(1+\varepsilon_{3}\right)}{1+\varepsilon_{2}}-x / y}{x / y}\right|=\left|\frac{\left(1+\varepsilon_{1}\right)\left(1+\varepsilon_{3}\right)}{1+\varepsilon_{2}}-1\right|
$$

Using the geometric series, $\frac{1}{1+\varepsilon_{2}}=1-\varepsilon_{2}+O\left(\varepsilon_{\text {max }}^{2}\right)$ gives

$$
\begin{aligned}
E_{\div} & =\left|\left(1+\varepsilon_{1}\right)\left(1+\varepsilon_{3}\right)\left\{\left(1-\varepsilon_{2}\right)+O\left(\varepsilon_{\max }^{2}\right)\right\}-1\right|=\left|\left(1+\varepsilon_{4}\right)^{3}-1+O\left(\varepsilon_{\max }^{2}\right)\right| \\
& =\left|3 \varepsilon_{4}+O\left(\varepsilon_{\max }^{2}\right)\right|=O\left(\left|\varepsilon_{\max }\right|\right)
\end{aligned}
$$

