CS412: Lecture \#9

Mridul Aanjaneya

February 17, 2015

Lagrange Interpolation

Lagrange interpolation is an alternative way to define $\mathcal{P}_{n}(x)$, without having to solve expensive systems of equations. For a given set of $n+1$ points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, define the Lagrange polynomials of degree- $n l_{0}(x)$, $l_{1}(x), \ldots, l_{n}(x)$ as:

$$
l_{i}\left(x_{j}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Then, the interpolating polynomial is simply

$$
\mathcal{P}_{n}(x)=y_{0} l_{0}(x)+y_{1} l_{1}(x)+\ldots+y_{n} l_{n}(x)=\sum_{i=0}^{n} y_{i} l_{i}(x)
$$

Note that no solution of a linear system is required here. We just have to explain what every $l_{i}(x)$ looks like. Since $l_{i}(x)$ is a degree- n polynomial, with the n-roots $x_{0}, x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, x_{i+2}, \ldots, x_{n}$, it must have the form

$$
\begin{aligned}
l_{i}(x) & =C_{i}\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \ldots\left(x-x_{n}\right) \\
& =C_{i} \prod_{j \neq i}\left(x-x_{j}\right)
\end{aligned}
$$

Now, we require that $l_{i}\left(x_{i}\right)=1$, thus

$$
1=C_{i} \cdot \prod_{j \neq i}\left(x_{i}-x_{j}\right) \Rightarrow C_{i}=\frac{1}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}
$$

Thus, for every i, we have

$$
\begin{aligned}
l_{i}(x) & =\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \ldots\left(x-x_{n}\right)}{\left(x_{i}-x_{0}\right)\left(x_{i}-x_{1}\right) \ldots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \ldots\left(x_{i}-x_{n}\right)} \\
& =\prod_{j \neq i} \frac{\left(x-x_{j}\right)}{\left(x_{i}-x_{j}\right)}
\end{aligned}
$$

Note: This result essentially proves existence of a polynomial interpolant of degree n that passes through $n+1$ data points. We can also use it to prove that the Vandermonde matrix V is non-singular. If it were singular, a right hand side $\tilde{y}=\left(y_{0}, \ldots, y_{n}\right)$ would have existed such that $V \tilde{a}=\tilde{y}$ would have no solution, which is a contradiction!

Let's use Lagrange interpolation to compute an interpolating polynomial to the three data points $(-2,-27),(0,-1),(1,0)$.

$$
\begin{aligned}
\mathcal{P}_{2}(x) & =-27 \frac{(x-0)(x-1)}{(-2-0)(-2-1)}+(-1) \frac{(x-(-2))(x-1)}{(0-(-2))(0-1)}+0 \frac{(x-(-2))(x-0)}{(1-(-2))(1-0)} \\
& =-27 \frac{x(x-1)}{6}+\frac{(x+2)(x-1)}{2}=-1+5 x-4 x^{2}
\end{aligned}
$$

Recall form Lecture 8 that this is the same polynomial we computed using the monomial basis!

Let us evaluate the same four quality metrics we saw before for the Vandermonde matrix approach.

- Cost of determining $\mathcal{P}_{n}(x)$: very easy.

We are essentially able to write a formula for $\mathcal{P}_{n}(x)$ without solving any systems. However, if we want to write $\mathcal{P}_{n}(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$, the cost of evaluating the a_{i} 's would be very high! Each $l_{i}(x)$ would need to be expanded, leading to $O\left(n^{2}\right)$ operations for each $l_{i}(x)$ implying $O\left(n^{3}\right)$ operations for $\mathcal{P}_{n}(x)$.

- Cost of evaluating $\mathcal{P}_{n}(x)$ for an arbitrary x : significant.

We do not really need to compute the a_{i} 's beforehand, if we only need to evaluate $\mathcal{P}_{n}(x)$ at a select few locations. For each $l_{i}(x)$ the evaluation requires n subtractions and n multiplications, implying a total of $O\left(n^{2}\right)$ operations (better than $O\left(n^{3}\right)$ for computing the a_{i} 's).

- Availability of derivatives: not readily available.

Differentiating each $l_{i}(x)$ (since $\left.\mathcal{P}_{n}^{\prime}(x)=\sum y_{i} l_{i}^{\prime}(x)\right)$ is not trivial; the above expression has n terms each with $n-1$ products per term.

- Incremental interpolation: not accomodated.

Still, Lagrange interpolation is a good quality method if we can accept its limitations.

Newton Interpolation

Newton interpolation is yet another alternative, which enables both efficient evaluation and allows for incremental construction. Additionally, it allows both the coefficients $\left\{a_{i}\right\}$ as well as the derivative $\mathcal{P}_{n}^{\prime}(x)$ to be evaluated efficiently.

For a given set of data points $\left(x_{0}, y_{0}\right), \ldots,\left(x_{n}, y_{n}\right)$, the Newton basis functions are given by

$$
\pi_{j}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{j-1}\right)=\prod_{k=1}^{j-1}\left(x-x_{k}\right), \quad j=0, \ldots, n
$$

where we take the value of the product to be 1 when the limits make it vacuous. In the Newton basis, a given polynomial has the form
$\mathcal{P}_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\ldots+a_{n-1}\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right)$
From the definition, we see that $\pi_{j}\left(x_{i}\right)=0$ for $i<j$, so that the basis matrix A with $a_{i j}=\pi_{j}\left(x_{i}\right)$ is lower triangular. To illustrate Newton interpolation, we use it to determine the interpolating polynomial for the three data points $(-2,-27),(0,-1),(1,0)$. With the Newton basis, we have the lower triangular linear system

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & x_{1}-x_{0} & 0 \\
1 & x_{2}-x_{0} & \left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right]
$$

For the given data, this system becomes

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 0 \\
1 & 3 & 3
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
-27 \\
-1 \\
0
\end{array}\right]
$$

whose solution is $\tilde{a}=(-27,13,-4)$. Thus, the interpolating polynomial is

$$
\mathcal{P}_{2}(x)=-27+13(x+2)-4(x+2) x=-1+5 x-4 x^{2}
$$

which is the same polynomial we computed earlier!

