CS412: Lecture \#8

Mridul Aanjaneya

February 12, 2015

Polynomial Interpolation

A commonly used approach is to use a properly crafted polynomial function

$$
f(x)=\mathcal{P}_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}+a_{n} x^{n}
$$

to interpolate the points $\left(x_{0}, y_{0}\right), \ldots,\left(x_{k}, y_{k}\right)$. Some benefits:

- Polynomials are relatively simple to evaluate. They can be evaluated very efficiently using Horner's method, also known as nested evaluation or synthetic division:

$$
\mathcal{P}_{n}(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+x\left(\ldots\left(a_{n-1}+x a_{n}\right) \ldots\right)\right)\right)
$$

which requires only n additions and n multiplications. For example,

$$
1-4 x+5 x^{2}-2 x^{3}+3 x^{4}=1+x(-4+x(5+x(-2+3 x)))
$$

- We can easily compute derivatives $\mathcal{P}_{n}^{\prime}, \mathcal{P}_{n}^{\prime \prime}$ if desired.
- Reasonably established procedure to determine the coefficients a_{i}.
- Polynomial approximations are familiar from, e.g., Taylor series.

And some disadvantages:

- Fitting polynomials can be problematic, when

1. We have many data points (i.e., k is large), or
2. Some of the samples are too close together (i.e., $\left|x_{i}-x_{j}\right|$ is small).

In the interest of simplicity (and for some other reasons), we try to find the most basic, yet adequate, $\mathcal{P}_{n}(x)$ that interpolates $\left(x_{0}, y_{0}\right), \ldots,\left(x_{k}, y_{k}\right)$. For example,

- If $k=0$ (only one data sample), a 0 -degree polynomial (i.e., a constant function) will be adequate.

- If $k=1$, we have two points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$. A 0 -degree polynomial $\mathcal{P}_{0}(x)=a_{0}$ will not always be able to pass through both points (unless $y_{0}=y_{1}$), but a 1-degree polynomial $\mathcal{P}_{1}(x)=a_{0}+a_{1} x$ always can.

These are not the only polynomials that accomplish the task, e.g., when $k=0$,

or

The problem with using a degree higher than the minimum necessary is that:

- More than 1 solution becomes available, with the "right" one being unclear.
- Wildly varying curves become permissible, producing questionable approximations.
In fact, we can show that using a polynomial $\mathcal{P}_{n}(x)$ of degree n is the best choice when interpolating $n+1$ points. In this case, the following properties are assured:
- Existence: Such a polynomial always exists (assuming that all the x_{i} 's are different! It would be impossible for a function to pass through 2 points on the same vertical line). We will show this later, by explicitly constructing such a function. For now, we can at least show that such a task would have been impossible (in general) if we were only allowed to use degree- $(n-1)$ polynomials. In fact, consider the points

$$
\left(x_{0}, y_{0}=0\right),\left(x_{1}, y_{1}=0\right), \ldots,\left(x_{n-1}, y_{n-1}=0\right),\left(x_{n}, y_{n}=1\right)
$$

Thus, if a degree- $(n-1)$ polynomial was able to interpolate these points, we would have:

$$
\mathcal{P}_{n-1}\left(x_{0}\right)=\mathcal{P}_{n-1}\left(x_{1}\right)=\ldots=\mathcal{P}_{n-1}\left(x_{n-1}\right)=0
$$

$\mathcal{P}_{n-1}(x)$ can only equal zero at exactly $n-1$ locations unless it is the zero polynomial. Since $\mathcal{P}_{n-1}(x)$ is zero at n locations, we conclude that $\mathcal{P}_{n-1}(x) \equiv 0$. This is a contradiction as $\mathcal{P}_{n-1}\left(x_{n}\right) \neq 0$!

- Uniqueness: We can sketch a proof by contradiction. Assume that

$$
\begin{aligned}
& \mathcal{P}_{n}(x)=p_{0}+p_{1} x+\ldots+p_{n} x^{n} \\
& \mathcal{Q}_{n}(x)=q_{0}+q_{1} x+\ldots+q_{n} x^{n}
\end{aligned}
$$

both interpolate every $\left(x_{i}, y_{i}\right)$, i.e., $\mathcal{P}_{n}\left(x_{i}\right)=\mathcal{Q}_{n}\left(x_{i}\right)=y_{i}$, for all $0 \leq i \leq n$. Define another n-degree polynomial

$$
\mathcal{R}_{n}(x)=\mathcal{P}_{n}(x)-\mathcal{Q}_{n}(x)=r_{0}+r_{1} x+\ldots+r_{n} x^{n}
$$

Apparently, $\mathcal{R}_{n}\left(x_{i}\right)=0$ for all $0 \leq i \leq n$. From algebra, we know that every polynomial of degree n has at most n real roots, unless it is the zero polynomial, i.e., $r_{0}=r_{1}=\ldots=r_{n}=0$. Since we have $\mathcal{R}_{n}(x)=0$ for $n+1$ distinct values, we must have $\mathcal{R}_{n}(x)=0 \Rightarrow \mathcal{P}_{n}(x)=\mathcal{Q}_{n}(x)$!
The most basic procedure to determine the coefficients $a_{0}, a_{1}, \ldots, a_{n}$ of the interpolating polynomial $\mathcal{P}_{n}(x)$ is to write a linear system of equations as follows:

$$
\begin{aligned}
a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}+\ldots+a_{n-1} x_{1}^{n-1}+a_{n} x_{1}^{n} & =\mathcal{P}_{n}\left(x_{1}\right)=y_{1} \\
a_{0}+a_{1} x_{2}+a_{2} x_{2}^{2}+\ldots+a_{n-1} x_{2}^{n-1}+a_{n} x_{2}^{n} & =\mathcal{P}_{n}\left(x_{2}\right)=y_{2} \\
& \vdots \\
a_{0}+a_{1} x_{n}+a_{2} x_{n}^{2}+\ldots+a_{n-1} x_{n}^{n-1}+a_{n} x_{n}^{n} & =\mathcal{P}_{n}\left(x_{n}\right)=y_{n}
\end{aligned}
$$

or, in matrix form:

$$
\underbrace{\left[\begin{array}{cccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} & x_{1}^{n} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} & x_{2}^{n} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1} & x_{n}^{n}
\end{array}\right]}_{V_{(n+1) \times(n+1)}} \underbrace{\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]}_{a_{(n+1)}}=\underbrace{\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]}_{y_{(n+1)}}
$$

The matrix V is called a Vandermonde matrix. The set of functions $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ represent the monomial basis. We will see that V is non-singular, thus, we can solve the system $V \tilde{a}=\tilde{y}$ to obtain the coefficients $\tilde{a}=\left(a_{0}, a_{1}, \ldots, a_{n}\right)$. Let's evaluate the merit and drawbacks of this approach:

- Cost to determine the polynomial $\mathcal{P}_{n}(x)$: very costly.

Since a dense $(n+1) \times(n+1)$ linear system has to be solved. This will generally require time proportional to n^{3}, making large interpolation problems intractable. In addition, the Vandermonde matrix is notorious for being challenging to solve (especially with Gaussian elimination) and prone to large errors in the computed coefficients $\left\{a_{i}\right\}$, when n is large and/or $x_{i} \approx x_{j}$.

- Cost to evaluate $f(x)$ ($x=$ arbitrary) if coefficients are known: very cheap. Using Horner's method:

$$
a_{0}+a_{1} x+a_{2} x^{2}+\ldots a_{n} x^{n}=a_{0}+x\left(a_{1}+x\left(a_{2}+x\left(\ldots\left(a_{n-1}+x a_{n}\right) \ldots\right)\right)\right)
$$

- Availability of derivatives: very easy. For example,

$$
\mathcal{P}_{n}^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots+(n-1) a_{n-1} x^{n-2}+n a_{n} x^{n-1}
$$

- Allows incremental interpolation: no!

This property examines if interpolating through $\left(x_{0}, y_{0}\right), \ldots,\left(x_{n}, y_{n}\right)$ is easier if we already know a polynomial (of degree $n-1$) that interpolates through $\left(x_{0}, y_{0}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)$. In our case, the system $V \tilde{a}=\tilde{y}$ would have to be solved from scratch for the $n+1$ data points.

To illustrate polynomial interpolation using the monomial basis, we will determine the polynomial of degree 2 interpolating the three data points $(-2,-27)$, $(0,-1),(1,0)$. In general, there is a unique polynomial

$$
\mathcal{P}_{2}(x)=a_{0}+a_{1} x+a_{2} x^{2}
$$

Writing down the Vandermonde system for this data gives

$$
\left[\begin{array}{ccc}
1 & -2 & 4 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
-27 \\
-1 \\
0
\end{array}\right]
$$

Solving this system by Gaussian elimination yields the solution $\tilde{a}=(-1,5,-4)$ so that the interpolating polynomial is

$$
\mathcal{P}_{2}(x)=-1+5 x-4 x^{2}
$$

