
CS412: Lecture #8

Mridul Aanjaneya

February 12, 2015

Polynomial Interpolation

A commonly used approach is to use a properly crafted polynomial function

f(x) = Pn(x) = a0 + a1x + a2x
2 + . . . + an−1x

n−1 + anx
n

to interpolate the points (x0, y0), . . . , (xk, yk). Some benefits:

• Polynomials are relatively simple to evaluate. They can be evaluated
very efficiently using Horner’s method, also known as nested evaluation or
synthetic division:

Pn(x) = a0 + x(a1 + x(a2 + x(. . . (an−1 + xan) . . .)))

which requires only n additions and n multiplications. For example,

1− 4x + 5x2 − 2x3 + 3x4 = 1 + x(−4 + x(5 + x(−2 + 3x)))

• We can easily compute derivatives P ′n,P ′′n if desired.

• Reasonably established procedure to determine the coefficients ai.

• Polynomial approximations are familiar from, e.g., Taylor series.

And some disadvantages:

• Fitting polynomials can be problematic, when

1. We have many data points (i.e., k is large), or

2. Some of the samples are too close together (i.e., |xi − xj | is small).

In the interest of simplicity (and for some other reasons), we try to find the most
basic, yet adequate, Pn(x) that interpolates (x0, y0), . . . , (xk, yk). For example,

• If k = 0 (only one data sample), a 0-degree polynomial (i.e., a constant
function) will be adequate.

1

x0

y0 P0(x)

• If k = 1, we have two points (x0, y0) and (x1, y1). A 0-degree polynomial
P0(x) = a0 will not always be able to pass through both points (unless
y0 = y1), but a 1-degree polynomial P1(x) = a0 + a1x always can.

(x0, y0)

(x1, y1)

y = y1 −
y1 − y0
x1 − x0

x1︸ ︷︷ ︸
a0

+
y1 − y0
x1 − x0︸ ︷︷ ︸

a1

x

2

These are not the only polynomials that accomplish the task, e.g., when k = 0,

...

...

... ...

or

3

The problem with using a degree higher than the minimum necessary is that:

• More than 1 solution becomes available, with the “right” one being un-
clear.

• Wildly varying curves become permissible, producing questionable ap-
proximations.

In fact, we can show that using a polynomial Pn(x) of degree n is the best
choice when interpolating n+1 points. In this case, the following properties are
assured:

• Existence: Such a polynomial always exists (assuming that all the xi’s
are different! It would be impossible for a function to pass through 2
points on the same vertical line). We will show this later, by explicitly
constructing such a function. For now, we can at least show that such a
task would have been impossible (in general) if we were only allowed to
use degree-(n− 1) polynomials. In fact, consider the points

(x0, y0 = 0), (x1, y1 = 0), . . . , (xn−1, yn−1 = 0), (xn, yn = 1)

Thus, if a degree-(n− 1) polynomial was able to interpolate these points,
we would have:

Pn−1(x0) = Pn−1(x1) = . . . = Pn−1(xn−1) = 0

Pn−1(x) can only equal zero at exactly n − 1 locations unless it is the
zero polynomial. Since Pn−1(x) is zero at n locations, we conclude that
Pn−1(x) ≡ 0. This is a contradiction as Pn−1(xn) 6= 0!

• Uniqueness: We can sketch a proof by contradiction. Assume that

Pn(x) = p0 + p1x + . . . + pnx
n

Qn(x) = q0 + q1x + . . . + qnx
n

both interpolate every (xi, yi), i.e., Pn(xi) = Qn(xi) = yi, for all 0 ≤ i ≤ n.
Define another n-degree polynomial

Rn(x) = Pn(x)−Qn(x) = r0 + r1x + . . . + rnx
n

Apparently, Rn(xi) = 0 for all 0 ≤ i ≤ n. From algebra, we know that
every polynomial of degree n has at most n real roots, unless it is the zero
polynomial, i.e., r0 = r1 = . . . = rn = 0. Since we have Rn(x) = 0 for
n + 1 distinct values, we must have Rn(x) = 0⇒ Pn(x) = Qn(x)!

The most basic procedure to determine the coefficients a0, a1, . . . , an of the
interpolating polynomial Pn(x) is to write a linear system of equations as follows:

a0 + a1x1 + a2x
2
1 + . . . + an−1x

n−1
1 + anx

n
1 = Pn(x1) = y1

a0 + a1x2 + a2x
2
2 + . . . + an−1x

n−1
2 + anx

n
2 = Pn(x2) = y2

...

a0 + a1xn + a2x
2
n + . . . + an−1x

n−1
n + anx

n
n = Pn(xn) = yn

4

or, in matrix form:
1 x1 x2

1 . . . xn−1
1 xn

1

1 x2 x2
2 . . . xn−1

2 xn
2

...
...

...
...

...
...

1 xn x2
n . . . xn−1

n xn
n

︸ ︷︷ ︸

V(n+1)×(n+1)

a0
a1
...
an

︸ ︷︷ ︸
a(n+1)

=

y0
y1
...
yn

︸ ︷︷ ︸
y(n+1)

The matrix V is called a Vandermonde matrix. The set of functions {1, x, x2, . . . , xn}
represent the monomial basis. We will see that V is non-singular, thus, we can
solve the system V ã = ỹ to obtain the coefficients ã = (a0, a1, . . . , an). Let’s
evaluate the merit and drawbacks of this approach:

• Cost to determine the polynomial Pn(x): very costly.

Since a dense (n + 1) × (n + 1) linear system has to be solved. This
will generally require time proportional to n3, making large interpolation
problems intractable. In addition, the Vandermonde matrix is notorious
for being challenging to solve (especially with Gaussian elimination) and
prone to large errors in the computed coefficients {ai}, when n is large
and/or xi ≈ xj .

• Cost to evaluate f(x) (x=arbitrary) if coefficients are known: very cheap.
Using Horner’s method:

a0 + a1x + a2x
2 + . . . anx

n = a0 + x(a1 + x(a2 + x(. . . (an−1 + xan) . . .)))

• Availability of derivatives: very easy. For example,

P ′n(x) = a1 + 2a2x + 3a3x
2 + . . . + (n− 1)an−1x

n−2 + nanx
n−1

• Allows incremental interpolation: no!

This property examines if interpolating through (x0, y0), . . . , (xn, yn) is
easier if we already know a polynomial (of degree n− 1) that interpolates
through (x0, y0), . . . , (xn−1, yn−1). In our case, the system V ã = ỹ would
have to be solved from scratch for the n + 1 data points.

To illustrate polynomial interpolation using the monomial basis, we will deter-
mine the polynomial of degree 2 interpolating the three data points (−2,−27),
(0,−1), (1, 0). In general, there is a unique polynomial

P2(x) = a0 + a1x + a2x
2

Writing down the Vandermonde system for this data gives 1 −2 4
1 0 0
1 1 1

 a0
a1
a2

 =

 −27
−1
0

5

Solving this system by Gaussian elimination yields the solution ã = (−1, 5,−4)
so that the interpolating polynomial is

P2(x) = −1 + 5x− 4x2

6

