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Initial value problems for 1st order ordinary dif-
ferential equations

Problem statement: Find the function y(t) : [t0,∞) → R that satisfies the
ordinary differential equation:

y′(t) = f(t, y(t)) for a certain function f (1)

and y(t0) = y0.

Method: (1-step algorithms)

• Set tk = t0 + k∆t.

• Define yk = y(tk).

• Iteratively approximate

yk+1 = yk + ∆tf(tk, yk)︸ ︷︷ ︸
(Forward Euler)

Explicit

yk+1 = yk + ∆tf(tk+1, yk+1)︸ ︷︷ ︸
(Backward Euler)

yk+1 = yk +
∆t

2
[f(tk, yk) + f(tk+1, yk+1)]︸ ︷︷ ︸
(Trapezoidal)


Implicit

Before we use one of these algorithms in practice we need to examine their
limitations and ensure they are usable for a specific problem. We look at the
following:

Properties of the ODE itself Properties of the numerical method
Are the solutions to the ODE stable? Is the numerical method stable? Under what conditions?

What is the accuracy of the method?
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Stability of solutions to ODE

Under normal circumstances, we expect the ODE (1) to have a unique solution;
however, if we omit the initial condition, we get an entire family of solutions to
the ODE. For example,

• consider y′(t) = λy(t). The exact solution is y(t) = ceλt (for any arbitrary
c ∈ R). For λ > 0, the solutions diverge because eλt → ∞ as t → ∞,
while for λ < 0 the solutions converge because eλt → 0 as t→∞.

• consider y′(t) = f(t) (f is a function of t alone not y). The exact solution

is y(t) =
∫ t
t0
f(τ)dτ + c, where c ∈ R is an arbitrary constant. In this case,

the solutions stay a fixed distance apart.

Definition: An ODE is said to have stable solutions if the distance between
any two solutions y and ŷ remains bounded, i.e., |y(t)− ŷ(t)| ≤ constant, ∀t ≥ t0.
(Strictly speaking, we must also be able to make this constant arbitrarily small,
by bringing the initial values y0 and ŷ0 close together.)

If additionally, we have that for any two solutions y(t) and ŷ(t), we have
limt→∞ |y(t) − ŷ(t)| = 0, the ODE has asymptotically stable solutions. Note
that if an ODE is asymptotically stable, then it is stable too.

Otherwise (i.e., when the solutions diverge from one another) the ODE is said
to have unstable solutions.

The ODE y′(t) = λy(t) is called the model 1st order ODE and is extremely

useful as an example in the analysis of stability, etc. We have:

• When λ < 0, the solutions to the model ODE are asymptotically stable
(converge towards one another).

• When λ > 0, the solutions are unstable (diverge away).

• When λ = 0, the solutions are stable although not asymptotically stable
(they stay within bounded distance).

For a more general ODE y′ = f(t, y), the criteria are:

• If ∂f
∂y (t, y) < 0 for all t and y, the solutions are asymptotically stable.

• If ∂f
∂y (t, y) ≤ 0 for all t and y, the solutions are stable (but not necessarily

asymptotically stable).

• If ∂f
∂y (t, y) is positive or changes sign, we cannot conclude stability with

certainty.
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Why do we want ODEs with stable solutions?

• Errors (approximation, truncation, roundoff) tend to move us away from
the “intended” solution to an IVP, and onto another function from the
family of solutions to the ODE. If the solution if stable (or even better,
asymptotically stable) then the error remains bounded (or diminishes, for
asymptotic stability) over time.

• ODEs with unstable solutions are prone to developing problematic be-
haviors. For example, different solutions may become undefined after a
certain (solution-dependent) point in time. For example, y′(t) = ty3, the
exact solution is y(t) = ± 1√

c−t2 .

Designing a “usable” algorithm for approximating solutions to an unstable ODE
is highly nontrivial, and we will not address it in CS412! So, we will continue
under the premise that the ODE in question is stable.

Sometimes, even if the ODE is stable, an approximation method may diverge/overflow!
For example, y′ = λy, λ < 0 (exact solution y(t) = y0e

λ(t−t0)). Using Forward
Euler:

yk+1 = yk + ∆tλyk = (1 + λ∆t)yk

⇒ yk = (1 + λ∆t)ky0

When λ < 0, the exact solution satisfies:

y(t) = y0e
λ(t−t0) t→∞−−−→ 0

However, for the approximate solution

yk = (1 + λ∆t)ky0
t→∞−−−→

 Converges to 0 if |1 + λ∆t| < 1
Diverges to ±∞ if |1 + λ∆t| > 1

Oscillates, if |1 + λ∆t| = 1

Definition: A numerical method is called stable when applied to an ODE
with stable solutions, if it exhibits the same asymptotic behavior with the exact
solution when t→∞.

In our case, the proper asymptotic behavior is yk
t→∞−−−→ 0, which is only guar-

anteed when

|1 + λ∆t| < 1 ⇔ −1 < 1 + λ∆t < 1

⇔ −2 < λ∆t < 0︸ ︷︷ ︸
always true since λ < 0

⇔ −2 < −|λ|∆t

⇔ ∆t <
2

|λ|
← stability condition for Forward Euler!
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What about Backward Euler?

Again we test on the model stable ODE y′ = λy, λ < 0

yk+1 = yk + ∆tf(tk+1, yk+1)

= yk + ∆t · λyk+1

⇒ (1− λ∆t)yk+1 = yk

⇒ yk+1 =
1

1− λ∆t
yk ⇒ yk =

(
1

1− λ∆t

)k
y0

Here, on order to have yk
k→∞−−−−→ 0, we need

∣∣∣∣ 1

1− λ∆t

∣∣∣∣ < 1⇔ |1− λ∆t| > 1← Always true since λ < 0!

Thus, Backward Euler is unconditionally stable!

Trapezoidal rule

Using the rule on the model ODE y′ = λy, λ < 0

yk+1 = yk +
∆t

2
[f(tk, yk) + f(tk+1, yk+1)]

= yk +
∆t

2
[λyk + λyk+1]

⇒
(

1− λ∆t

2

)
yk+1 =

(
1 +

λ∆t

2

)
yk

⇒ yk =

(
1 + λ∆t/2

1− λ∆t/2

)k
y0

For stability, we need:

∣∣∣∣1 + λ∆t/2

1− λ∆t/2

∣∣∣∣ < 1 ⇔
∣∣∣∣1 +

λ∆t

2

∣∣∣∣ < ∣∣∣∣1− λ∆t

2

∣∣∣∣︸ ︷︷ ︸
>0

⇔
∣∣∣∣1 +

λ∆t

2

∣∣∣∣ < 1− λ∆t

2

⇔ −1 +
λ∆t

2
< 1 +

λ∆t

2
< 1− λ∆t

2

The left inequality is always true, while the right inequality is always true for
λ < 0. Thus, the trapezoidal rule is also unconditionally stable!
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