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Initial value problems for 1st order ordinary dif-
ferential equations

In this last part of our class, we will turn our attention to differential equation
problems, of the form: find the function y(t) : [t0,∞) → R that satisfies the
ordinary differential equation (ODE):

y′(t) = f(t, y(t)) for a certain function f (1)

and y(t0) = y0. This is called an initial value problem (IVP), because the value
of y for t > t0 are completely determined from the initial value y0 and equation
(1).

Example #1: The velocity of a vehicle over the time interval [0, 5] satisfies
v(t) = t(t+ 1). At time t = 0, the vehicle starts from position x(0) = 5. What
is x(t), t ∈ [0, 5]?

Answer: The problem is given by the IVP:

x′(t) = t(t+ 1), x(0) = 5 since v(t) = x′(t)

Example #2: The concentration y(t) of a chemical species is given by:

y′(t) = y(t)(t2 + 1), y(0) = 1 here f(t, y) = y(t)(t2 + 1)

Of course, in certain cases we can solve this differential equation exactly, for
e.g., in the last example:

y′(t) = y(t)(t2 + 1)⇒ y′

y
= t2 + 1
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Integrating both sides gives

∫ t

t0=0

y′

y
dτ =

∫ t

t0=0

(τ2 + 1)dτ ⇒ |ln y|tt0=0 =

∣∣∣∣τ3

3
+ τ

∣∣∣∣t
0

⇒ ln y(t)− ln y(0)︸ ︷︷ ︸
=0

=
t3

3
+ t⇒ y(t) = e

t3

3 +t

However, we do not want to depend on our ability to solve the ODE exactly,
since:

• An exact solution may not be analytically expressible in closed form.

• The exact solution may be too complicated and,

• (more importantly) the function f(t, y) may not be available as a formula;
e.g., it could result from a black box computer program.

Solution: Approximate the solution to the differential equation. General
methodology (“1-step methods”):

• Consider discrete points in time

t0 < t1 < t2 < . . . < tn < . . .

If we set ∆tk = tk+1 − tk and ∆tk = ∆t = constant, then tk = t0 + k∆t.

• Use the notation yk = y(tk).

• Use the values tk, yk and the ODE y′(t) = f(t, y) to approximate yk+1.

Method:

y′(t) = f(t, y)

⇒
∫ tk+1

tk

y′(τ)dτ =

∫ tk+1

tk

f(τ, y)dτ

⇒ y(tk+1)︸ ︷︷ ︸
=yk+1

− y(tk)︸ ︷︷ ︸
=yk

=

∫ tk+1

tk

f(τ, y)dτ︸ ︷︷ ︸
Approximate using an integration rule!

Thus,

y0

t0

}
→ y1

t1

}
→ y2

t2

}
→ y3

t3

}
→ . . .
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For example, approximating this integral with the rectangle rule
∫ b

a
f(x)dx ≈

f(a)(b− a) gives

yk+1 − yk =

∫ tk+1

tk

f(τ, y)dτ ≈ f(tk, yk)(tk+1 − tk)⇒ yk+1 = yk + ∆tf(tk, yk)

This method is called the Forward Euler method, or Euler’s method, or Explicit
Euler’s method. It is easy to evaluate, plug in tk, yk and obtain yk+1.

Now, if we had used the “right-sided” rectangle rule
∫ b

a
f(x)dx ≈ f(b)(b − a),

we would obtain:

yk+1 − yk =

∫ tk+1

tk

f(τ, y)dτ ≈ f(tk+1, yk+1)∆t⇒ yk+1 = yk + ∆tf(tk+1, yk+1)

This method is called the Backward Euler method, or Implicit Euler method.

Note: We need to solve a (possibly nonlinear) equation to obtain yk+1 (yk+1 is
not isolated in this equation).

One more variant: trapezoidal rule
∫ b

a
f(x)dx = f(a)+f(b)

2 (b− a).

yk+1 − yk =

∫ tk+1

tk

f(τ, y)dτ ≈ f(tk, yk) + f(tk+1, yk+1)

2
∆t

⇒ yk+1 = yk +
∆t

2
{f(tk, yk) + f(tk+1, yk+1)}

Example: y′(t) = −ty2 using trapezoidal rule

yk+1 = yk +
∆t

2
{−tky2

k − tk+1y
2
k+1}

Let: tk = 0.9, yk = 1, and ∆t = 0.1

yk+1 = 1 + 0.05{−0.9− 1 · y2
k+1}

⇒ 0.05y2
k+1 + yk+1 + 1.045 = 0⇒ solve quadratic to get yk+1

Another example:

y′(t) = −2y(t)
y(0) = 1

}
exact solution y(t) = e−2t
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Using Forward Euler:

yk+1 = yk + ∆tf(tk, yk)

= yk − 2∆tyk = (1− 2∆t)yk

Thus,

y1 = (1− 2∆t)y0

y2 = (1− 2∆t)y1 = (1− 2∆t)2y0

...

yk = (1− 2∆t)ky0

How does this behave when ∆t→ 0?

(1− 2∆t)k =

[(
1 +

1

− 1
2∆t

)− 1
2∆t

]−2k∆t

Using lim
(
1 + 1

x

)x
= e,

⇒ lim
∆t→0

(1− 2∆t)k = e−2k∆t = e−2tk

Thus, when ∆t→ 0, yk → e−2tk (compare with exact solution y(t) = e−2t).
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