CS412: Lecture \#23

Mridul Aanjaneya

April 16, 2015

Initial value problems for 1st order ordinary differential equations

In this last part of our class, we will turn our attention to differential equation problems, of the form: find the function $y(t):\left[t_{0}, \infty\right) \rightarrow \mathbb{R}$ that satisfies the ordinary differential equation (ODE):

$$
\begin{equation*}
y^{\prime}(t)=f(t, y(t)) \quad \text { for a certain function } f \tag{1}
\end{equation*}
$$

and $y\left(t_{0}\right)=y_{0}$. This is called an initial value problem (IVP), because the value of y for $t>t_{0}$ are completely determined from the initial value y_{0} and equation (1).

Example \#1: The velocity of a vehicle over the time interval $[0,5]$ satisfies $v(t)=t(t+1)$. At time $t=0$, the vehicle starts from position $x(0)=5$. What is $x(t), t \in[0,5]$?

Answer: The problem is given by the IVP:

$$
x^{\prime}(t)=t(t+1), \quad x(0)=5 \quad \text { since } v(t)=x^{\prime}(t)
$$

Example \#2: The concentration $y(t)$ of a chemical species is given by:

$$
y^{\prime}(t)=y(t)\left(t^{2}+1\right), \quad y(0)=1 \quad \text { here } f(t, y)=y(t)\left(t^{2}+1\right)
$$

Of course, in certain cases we can solve this differential equation exactly, for e.g., in the last example:

$$
y^{\prime}(t)=y(t)\left(t^{2}+1\right) \Rightarrow \frac{y^{\prime}}{y}=t^{2}+1
$$

Integrating both sides gives

$$
\begin{aligned}
\int_{t_{0}=0}^{t} \frac{y^{\prime}}{y} d \tau & =\int_{t_{0}=0}^{t}\left(\tau^{2}+1\right) d \tau \Rightarrow|\ln y|_{t_{0}=0}^{t}=\left|\frac{\tau^{3}}{3}+\tau\right|_{0}^{t} \\
& \Rightarrow \ln y(t)-\underbrace{\ln y(0)}_{=0}
\end{aligned}
$$

However, we do not want to depend on our ability to solve the ODE exactly, since:

- An exact solution may not be analytically expressible in closed form.
- The exact solution may be too complicated and,
- (more importantly) the function $f(t, y)$ may not be available as a formula; e.g., it could result from a black box computer program.

Solution: Approximate the solution to the differential equation. General methodology ("1-step methods"):

- Consider discrete points in time

$$
t_{0}<t_{1}<t_{2}<\ldots<t_{n}<\ldots
$$

If we set $\Delta t_{k}=t_{k+1}-t_{k}$ and $\Delta t_{k}=\Delta t=$ constant, then $t_{k}=t_{0}+k \Delta t$.

- Use the notation $y_{k}=y\left(t_{k}\right)$.
- Use the values t_{k}, y_{k} and the $\operatorname{ODE} y^{\prime}(t)=f(t, y)$ to approximate y_{k+1}.

Method:

$$
\begin{aligned}
y^{\prime}(t) & =f(t, y) \\
\Rightarrow \int_{t_{k}}^{t_{k+1}} y^{\prime}(\tau) d \tau & =\int_{t_{k}}^{t_{k+1}} f(\tau, y) d \tau \\
\Rightarrow \underbrace{y\left(t_{k+1}\right)}_{=y_{k+1}}-\underbrace{y\left(t_{k}\right)}_{=y_{k}} & =
\end{aligned}
$$

Approximate using an integration rule!
Thus,

$$
\left.\left.\left.\left.\begin{array}{c}
y_{0} \\
t_{0}
\end{array}\right\} \rightarrow \begin{array}{c}
y_{1} \\
t_{1}
\end{array}\right\} \rightarrow \begin{array}{c}
y_{2} \\
t_{2}
\end{array}\right\} \rightarrow \begin{array}{c}
y_{3} \\
t_{3}
\end{array}\right\} \rightarrow \ldots
$$

For example, approximating this integral with the rectangle rule $\int_{a}^{b} f(x) d x \approx$ $f(a)(b-a)$ gives
$y_{k+1}-y_{k}=\int_{t_{k}}^{t_{k+1}} f(\tau, y) d \tau \approx f\left(t_{k}, y_{k}\right)\left(t_{k+1}-t_{k}\right) \Rightarrow y_{k+1}=y_{k}+\Delta t f\left(t_{k}, y_{k}\right)$
This method is called the Forward Euler method, or Euler's method, or Explicit Euler's method. It is easy to evaluate, plug in t_{k}, y_{k} and obtain y_{k+1}.
Now, if we had used the "right-sided" rectangle rule $\int_{a}^{b} f(x) d x \approx f(b)(b-a)$, we would obtain:
$y_{k+1}-y_{k}=\int_{t_{k}}^{t_{k+1}} f(\tau, y) d \tau \approx f\left(t_{k+1}, y_{k+1}\right) \Delta t \Rightarrow y_{k+1}=y_{k}+\Delta t f\left(t_{k+1}, y_{k+1}\right)$
This method is called the Backward Euler method, or Implicit Euler method.
Note: We need to solve a (possibly nonlinear) equation to obtain $y_{k+1}\left(y_{k+1}\right.$ is not isolated in this equation).

One more variant: trapezoidal rule $\int_{a}^{b} f(x) d x=\frac{f(a)+f(b)}{2}(b-a)$.

$$
\begin{aligned}
y_{k+1}-y_{k} & =\int_{t_{k}}^{t_{k+1}} f(\tau, y) d \tau \approx \frac{f\left(t_{k}, y_{k}\right)+f\left(t_{k+1}, y_{k+1}\right)}{2} \Delta t \\
& \Rightarrow y_{k+1}=y_{k}+\frac{\Delta t}{2}\left\{f\left(t_{k}, y_{k}\right)+f\left(t_{k+1}, y_{k+1}\right)\right\}
\end{aligned}
$$

Example: $y^{\prime}(t)=-t y^{2}$ using trapezoidal rule

$$
y_{k+1}=y_{k}+\frac{\Delta t}{2}\left\{-t_{k} y_{k}^{2}-t_{k+1} y_{k+1}^{2}\right\}
$$

Let: $t_{k}=0.9, y_{k}=1$, and $\Delta t=0.1$

$$
\begin{array}{r}
y_{k+1}=1+0.05\left\{-0.9-1 \cdot y_{k+1}^{2}\right\} \\
\Rightarrow 0.05 y_{k+1}^{2}+y_{k+1}+1.045=0 \Rightarrow \text { solve quadratic to get } y_{k+1}
\end{array}
$$

Another example:

$$
\left.\begin{array}{l}
y^{\prime}(t)=-2 y(t) \\
y(0)=1
\end{array}\right\} \text { exact solution } y(t)=e^{-2 t}
$$

Using Forward Euler:

$$
\begin{aligned}
y_{k+1} & =y_{k}+\Delta t f\left(t_{k}, y_{k}\right) \\
& =y_{k}-2 \Delta t y_{k}=(1-2 \Delta t) y_{k}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
y_{1} & =(1-2 \Delta t) y_{0} \\
y_{2} & =(1-2 \Delta t) y_{1}=(1-2 \Delta t)^{2} y_{0} \\
& \vdots \\
y_{k} & =(1-2 \Delta t)^{k} y_{0}
\end{aligned}
$$

How does this behave when $\Delta t \rightarrow 0$?

$$
(1-2 \Delta t)^{k}=\left[\left(1+\frac{1}{-\frac{1}{2 \Delta t}}\right)^{-\frac{1}{2 \Delta t}}\right]^{-2 k \Delta t}
$$

Using $\lim \left(1+\frac{1}{x}\right)^{x}=e$,

$$
\Rightarrow \lim _{\Delta t \rightarrow 0}(1-2 \Delta t)^{k}=e^{-2 k \Delta t}=e^{-2 t_{k}}
$$

Thus, when $\Delta t \rightarrow 0, y_{k} \rightarrow e^{-2 t_{k}}$ (compare with exact solution $y(t)=e^{-2 t}$).

