CS412: Lecture \#22

Mridul Aanjaneya

April 14, 2015

Simpson's rule

This is a slightly more complicated algorithm, but the accuracy gains are so attractive that it has become somewhat of a golden standard for numerical integration. It is based on (piecewise) quadratic interpolation. Specifically, consider three equally spaced x-values:

$$
x_{1}, x_{2}=x_{1}+h, x_{3}=x_{1}+2 h
$$

with associated y-values, $y_{i}=f\left(x_{i}\right), i=1,2,3$. We will approximate $f(x)$ in [x_{1}, x_{3}] with a quadratic $p(x)=c_{2} x^{2}+c_{1} x+c_{0}$ that interpolates the three data points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$. Using Lagrange interpolation:

$$
\begin{aligned}
& l_{1}(x)=\frac{\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}=\frac{\left(x-x_{2}\right)\left(x-x_{3}\right)}{(-h)(-2 h)}=\frac{1}{2 h^{2}}\left(x-x_{2}\right)\left(x-x_{3}\right) \\
& l_{2}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)}=-\frac{1}{h^{2}}\left(x-x_{1}\right)\left(x-x_{3}\right) \\
& l_{3}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)}=\frac{1}{2 h^{2}}\left(x-x_{1}\right)\left(x-x_{2}\right)
\end{aligned}
$$

and $p(x)=y_{1} l_{1}(x)+y_{2} l_{2}(x)+y_{3} l_{3}(x)$. We then proceed to approximate

$$
\underbrace{\int_{x_{1}}^{x_{3}} f(x) d x}_{I} \approx \underbrace{\int_{x_{1}}^{x_{3}} p(x) d x}_{I_{\text {simp }}}=\sum_{i=1}^{3} y_{l} \int_{x_{1}}^{x_{3}} l_{i}(x) d x
$$

After some easy (yet tedious) analytic integration using the previous formulas, we get:

$$
\int_{x_{1}}^{x_{3}} l_{1}(x) d x=\frac{h}{3}, \int_{x_{1}}^{x_{3}} l_{2}(x) d x=\frac{4 h}{3}, \int_{x_{1}}^{x_{3}} l_{3}(x) d x=\frac{h}{3}
$$

Thus,

$$
\int_{x_{1}}^{x_{3}} p(x) d x=\frac{h}{3}\left(f\left(x_{1}\right)+4 f\left(x_{2}\right)+f\left(x_{3}\right)\right)
$$

This is Simpson's rule and is commonly written as:

$$
\int_{a}^{b} f(x) d x \approx \overbrace{\frac{b-a}{6}}^{=2 h}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]
$$

In order to define the respective composite rule, we use a partitioning:

$$
a=x_{0}<x_{1}<x_{2}<\ldots<x_{2 n-1}<x_{2 n}=b
$$

This time we define each interval $D_{k}=\left[x_{2 k}, x_{2 k+2}\right]$, and

$$
I_{k}=\int_{x_{2 k}}^{x_{2 k+2}} f(x) d x \Rightarrow I=\sum_{k=0}^{n-1} I_{k}
$$

Then,

$$
I_{k, \text { simp }}=\frac{h}{3}\left[f\left(x_{2 k}\right)+4 f\left(x_{2 k+1}\right)+f\left(x_{2 k+2}\right)\right]
$$

and the composite rule $I_{\text {simp }}=\sum_{k=0}^{n-1} I_{k, \text { simp }}$ becomes:

$$
I_{\text {simp }}=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+\ldots+2 f\left(x_{2 n-2}\right)+4 f\left(x_{2 n-1}\right)+f\left(x_{2 n}\right)\right]
$$

In order to estimate the local error, we again try to use the formula for the interpolation error of passing a quadratic $p^{(k)}(x)$ through $\left(x_{2 k}, f\left(x_{2 k}\right)\right),\left(x_{2 k+1}, f\left(x_{2 k+1}\right)\right)$, $\left(x_{2 k+2}, f\left(x_{2 k+2}\right)\right)$.

$$
f(x)-p^{(k)}(x)=\frac{f^{(3)}\left(c_{k}\right)}{3!}\left(x-x_{2 k}\right)\left(x-x_{2 k+1}\right)\left(x-x_{2 k+2}\right)
$$

Thus,

$$
\begin{aligned}
e_{k} & =\left|\int_{x_{2 k}}^{x_{2 k+2}}[f(x)-p(x)] d x\right| \\
& \leq \int_{x_{2 k}}^{x_{2 k+2}} \frac{\left|f^{(3)}\left(c_{k}\right)\right|}{3!}\left|\left(x-x_{2 k}\right)\left(x-x_{2 k+1}\right)\left(x-x_{2 k+2}\right)\right| d x \\
& \leq \frac{1}{6}\left\|f^{(3)}\right\|_{\infty} \int_{x_{2 k}}^{x_{2 k+2}}|\underbrace{\left(x-x_{2 k}\right)\left(x-x_{2 k+1}\right)\left(x-x_{2 k+2}\right)}_{(\star)}| d x
\end{aligned}
$$

And with this we are at a dead end! We cannot simply remove the absolute value in the expression (\star) since it changes sign in $\left[x_{2 k}, x_{2 k+2}\right]$. Even if we break up this integral in sub-intervals, we will at best show that Simpson's rule is 3rd order accurate, where in fact it is even more, i.e., 4th order accurate!

To achieve our goal, we will use a different (and more general) type of analysis. It is possible to show that:

Theorem 1. If an integration rule integrates exactly any polynomial up to degree $(d-1)$, then the global error is $O\left(h^{d}\right)$ or better, i.e., the rule is at least d-order accurate.
Methodology: We will test Simpson's rule on monomials $f(x)=x^{d}$, $d=$ $0,1,2, \ldots$

- $f(x)=1$:

$$
I_{\text {simp }}=\frac{b-a}{6}[1+4+1]=(b-a) \equiv \int_{a}^{b} 1 \cdot d x \Rightarrow \text { correct! }
$$

- $f(x)=x$:

$$
I_{\text {simp }}=\frac{b-a}{6}\left[a+4 f\left(\frac{a+b}{2}\right)+b\right]=\frac{b^{2}}{2}-\frac{a^{2}}{2} \equiv \int_{a}^{b} x d x \Rightarrow \text { correct! }
$$

- $f(x)=x^{2}$:

$$
I_{\mathrm{simp}}=\frac{b-a}{6}\left[a^{2}+f\left(\frac{a+b}{2}\right)^{2}+b^{2}\right]=\frac{b^{3}}{3}-\frac{a^{3}}{3} \equiv \int_{a}^{b} x^{2} d x \Rightarrow \text { correct! }
$$

- $f(x)=x^{3}$:

$$
I_{\text {simp }}=\frac{b-a}{6}\left[a^{3}+4\left(\frac{a+b}{2}\right)^{3}+b^{3}\right]=\frac{b^{4}}{4}-\frac{a^{4}}{4} \equiv \int_{a}^{b} x^{3} d x \Rightarrow \text { correct! }
$$

- $f(x)=x^{4}$:

$$
I_{\text {simp }}=\frac{b-a}{6}\left[a^{4}+4\left(\frac{a+b}{2}\right)^{4}+b^{4}\right]
$$

which is not equal to $\frac{b^{5}}{5}-\frac{a^{5}}{5}=\int_{a}^{b} x^{4} d x$
Thus, Simpson's rule is 4 th order accurate, i.e.,

$$
\begin{aligned}
e_{k, \text { local }} & \leq O\left(h^{5}\right) \\
e_{k, \text { global }} & \leq O\left(h^{4}\right)
\end{aligned}
$$

Assessing order of accuracy in integration rules

Theorem 2. If an integration rule integrates exactly any polynomial up to degree $(d-1)$, then the global error is $O\left(h^{d}\right)$ or better, i.e., the rule is at least d-order accurate.

Methodology:

- Test the integration rule on monomials of degree $0,1,2, \ldots$, i.e., on $f(x)=$ $1, f(x)=x, f(x)=x^{2}, \ldots$
- If $f(x)=x^{d}$ is the 1 st test function that is not integrated exactly, the order of accuracy is equal to d.

Example: Trapezoidal rule $I=\int_{a}^{b} f(x) d x \approx \frac{f(a)+f(b)}{2}(b-a)$.

- $f(x)=1$:

$$
I_{\text {trap }}=\frac{1+1}{2}(b-a)=(b-a) \Rightarrow \text { exact! }
$$

- $f(x)=x$:

$$
I_{\text {trap }}=\frac{a+b}{2}(b-a)=\frac{b^{2}}{2}-\frac{a^{2}}{2} \Rightarrow \text { exact! }
$$

- $f(x)=x^{2}$:

$$
I_{\text {trap }}=\frac{a^{2}+b^{2}}{2}(b-a) \xrightarrow{\text { not exact }}\left(\int_{a}^{b} x^{2} d x=\frac{b^{3}}{3}-\frac{a^{3}}{3}\right)
$$

Thus, trapezoidal rule is 2 nd order accurate!

