CS412: Lecture \#20

Mridul Aanjaneya

April 7, 2015

Overdetermined Systems

Definition: The least squares solution of the overdetermined system $A x \approx b$ is the vector x that minimizes $\|r\|_{2}=\|b-A x\|_{2}$.
Define $Q(x)=Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\|b-A x\|_{2}^{2}$ where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}(m>n)$. The least squares solution is the set of values x_{1}, \ldots, x_{n} that minimize $Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)$!

$$
\begin{aligned}
Q\left(x_{1}, \ldots, x_{n}\right) & =\|b-A x\|_{2}^{2}=\|r\|_{2}^{2}=\sum_{i=1}^{m} r_{i}^{2} \\
r=b-A x \Rightarrow r_{i} & =b_{i}-(A x)_{i} \Rightarrow r_{i}=b_{i}-\sum a_{i j} x_{j} \\
\Rightarrow Q\left(x_{1}, \ldots, x_{n}\right) & =\sum_{i=1}^{m}\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}\right)^{2}
\end{aligned}
$$

If $x_{1} \ldots, x_{n}$ are those that minimize Q, then:

$$
\frac{\partial Q}{\partial x_{1}}=0, \frac{\partial Q}{\partial x_{2}}=0, \ldots, \frac{\partial Q}{\partial x_{n}}=0
$$

in order to guarantee a minimum.

$$
\begin{aligned}
\frac{\partial Q}{\partial x_{k}} & =\frac{\partial}{\partial x_{k}}\left(\sum_{i=1}^{m}\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}\right)^{2}\right) \\
& =\sum_{i=1}^{m} \frac{\partial}{\partial x_{k}}\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}\right)^{2} \\
& =\sum_{i=1}^{m} 2 \underbrace{\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}\right)}_{r_{i}} \frac{\partial}{\partial x_{k}}\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}\right) \\
& =\sum_{i=1}^{m}-2 r_{i} a_{i k}=-2 \sum_{i=1}^{m}\left[A^{T}\right]_{k i} r_{i}=-2\left[A^{T} r\right]_{k}=0 \\
& \Rightarrow\left[A^{T} r\right]_{k}=0
\end{aligned}
$$

Thus,

$$
\left.\begin{array}{rl}
\partial Q / \partial x_{1}=0 \Rightarrow\left[A^{T} r\right]_{1}= & 0 \\
\partial Q / \partial x_{2}=0 \Rightarrow\left[A^{T} r\right]_{2}= & 0 \\
& \vdots \\
\partial Q / \partial x_{n}= & 0 \Rightarrow\left[A^{T} r\right]_{n}=0
\end{array}\right\} \Rightarrow A^{T} r=0
$$

Since $r=b-A x$, we have:

$$
0=A^{T} r=A^{T}(b-A x)=A^{T} b-A^{T} A x \Rightarrow A^{T} A x=A^{T} b
$$

The system above is called the normal equations system; it is a square system that has as solution the least-squares approximation of $A x \approx b$

$$
\underbrace{A_{n \times m}^{T} A_{m \times n}}_{n \times n} \underbrace{x_{n \times 1}}_{n \times 1}=\underbrace{A_{n \times m}^{T} b_{m \times 1}}_{n \times 1}
$$

The normal equations always have a solution (with the simple condition that the columns of A have to be linearly independent - usually true).

Problem: The condition number of $A^{T} A$ is the square of that of A (if A was square itself!).

$Q R$ factorization

An alternative method that does not suffer from this problematic conditioning is $Q R$ factorization.

Definition: An $n \times n$ matrix Q is called orthonormal if and only if

$$
Q^{T} Q=Q Q^{T}=I
$$

Theorem 1. Let $A \in \mathbb{R}^{m \times n}(m>n)$ have linearly independent columns. Then a decomposition $A=Q R$ exists, such that $Q \in \mathbb{R}^{m \times m}$ is orthonormal and $R \in \mathbb{R}^{m \times n}$ is upper triangular, i.e.,

$$
R=\binom{\hat{R}}{O}
$$

where \hat{R} is an $n \times n$ upper triangular matrix. Additionally, given that A has linearly independent columns, all diagonal elements $r_{i i} \neq 0$.

Now, let us write

$$
Q=\left[\hat{Q} \mid Q^{\star}\right]
$$

where $\hat{Q} \in \mathbb{R}^{m \times n}$ contains the first n columns of Q and $Q^{\star} \in \mathbb{R}^{m \times(m-n)}$ contains the last $(m-n)$ columns. Respectively, we write:

$$
R=\binom{\hat{R}}{O}
$$

where $\hat{R} \in \mathbb{R}^{n \times n}$ (and upper triangular) contains the first n rows of R. \hat{R} is also non-singular because it has linearly independent columns.

We can verify the following:

$$
\hat{Q}^{T} \hat{Q}=I_{n \times n} \quad\left(\text { although } \hat{Q} \hat{Q}^{T} \neq I_{m \times m}!\right)
$$

Proof.

$$
\begin{aligned}
{\left[\hat{Q}^{T} \hat{Q}\right]_{i j} } & =\sum_{k=1}^{m}\left[\hat{Q}^{T}\right]_{i k}[\hat{Q}]_{k j} \\
& =\sum_{k=1}^{m}[\hat{Q}]_{k i}[\hat{Q}]_{k j}=\sum_{k=1}^{m}[Q]_{k i}[Q]_{k j} \\
& =\left[Q^{T} Q\right]_{i j}=\left[I_{m \times m}\right]_{i j}
\end{aligned}
$$

The factorization $A=\hat{Q} \hat{R}$ is the so-called economy size $Q R$ factorization. Once we have \hat{Q} and \hat{R} computed, we observe that the normal equations can be written as:

$$
\begin{align*}
& A^{T} A x=A^{T} b \\
& \Rightarrow \hat{R}^{T} \underbrace{\hat{Q}^{T} \hat{Q}}_{=I_{m \times m}} \hat{R}=\hat{R}^{T} \hat{Q}^{T} b \\
& \Rightarrow \hat{R}^{T} \hat{R}=\hat{R}^{T} \hat{Q}^{T} b \\
& \Rightarrow \hat{R} x=\hat{Q}^{T} b \tag{1}
\end{align*}
$$

The last equality follows because \hat{R} is invertible.
Benefit: We can show that $\operatorname{cond}\left(A^{T} A\right)=[\operatorname{cond}(\hat{R})]^{2}$, thus equation (1) is much better conditioned than the normal equations system!

Numerical Integration

We seek an algorithm to approximate the definite integral:

$$
I=\int_{a}^{b} f(x) d x
$$

or, the area below the graph of $y=f(x)$. Of course, in the fortuitous case where we know a function $F(x)$ (the anti-derivative of f), such that $F^{\prime}(x)=f(x)$, we can write:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

For example, $\arctan (x)^{\prime}=1 /\left(1+x^{2}\right)$, thus

$$
\int_{a}^{b} \frac{d x}{1+x^{2}}=\arctan (b)-\arctan (a)
$$

However, this is not a practical algorithm, since:

- The anti-derivative is not generally known.
- Often, the anti-derivative may be significantly more expensive to evaluate than $f(x)$ itself. For example, compare $f(x)=1 /\left(1+x^{2}\right)$ (easy) with $F(x)=\arctan (x)$ (expensive).

Our general solution methodology will be as follows:

- Subdivide the interval of integration using the $n+1$ points $\left\{x_{i}\right\}_{i=0}^{n}$ with

$$
a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b
$$

- In each interval $\left[x_{i}, x_{i+1}\right]$, approximate $f(x)$ with some simpler function, say a polynomial $\mathcal{P}_{i}(x)$ which is easy to integrate. Approximate

$$
I_{i}=\int_{x_{i}}^{x_{i+1}} f(x) d x \approx \int_{x_{i}}^{x_{i+1}} \mathcal{P}_{i}(x) d x
$$

- Compute the integral

$$
I=\int_{a}^{b} f(x) d x=\sum_{i=0}^{n-1} I_{i} \approx \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} \mathcal{P}_{i}(x) d x
$$

Example: The rectangle rule: at each interval $\left[x_{i}, x_{i+1}\right]$ use the approximation $\mathcal{P}_{i}(x)=f\left(x_{i}\right)$ (the left end point!)

Thus, we approximate:

$$
I_{i}=\int_{x_{i}}^{x_{i+1}} f(x) d x \approx \int_{x_{i}}^{x_{i+1}} f\left(x_{i}\right) d x=f\left(x_{i}\right)\left(x_{i+1}-x_{i}\right)
$$

In the case where $x_{i+1}-x_{i}=h=$ constant, we can write

$$
I=\int_{a}^{b} f(x) d x=\sum_{i=0}^{n-1} I_{i} \approx \sum_{i=0}^{n-1} f\left(x_{i}\right) \cdot h=\frac{b-a}{n} \sum_{i=0}^{n-1} f\left(x_{i}\right)
$$

As in the case of interpolation, we can assess the error incurred by this approximation. There are two errors we actually focus on:

- The local error $\left|\int_{x_{i}}^{x_{i+1}}\left(f(x)-\mathcal{P}_{i}(x)\right)\right|$ at each subinterval $\left[x_{i}, x_{i+1}\right]$.
- The global error for the entire integral $\int_{a}^{b} f(x) d x$.

