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Solving Ax = b:

• Without pivoting:

Ax = L Ux︸︷︷︸
=y

= b

1. Solve Ly = b through forward substitution.

2. Solve Ux = y through back substitution to obtain the solution x.

Note that if we have multiple systems Axi = bi, we only need to incur the
cost of computing an LU decomposition of A once.

• With pivoting:

Ax = b⇔ PAx = Pb

1. Solve Ly = Pb using forward substitution.

2. Solve Ux = y using backward substitution to obtain the solution x.

Note that switching two rows twice puts the rows back, so P is its own in-
verse. Also note that P is an orthogonal matrix, i.e., P−1 = PT , so in
general P−1 = PT = P . The process shown above is called partial piv-
oting because it switches rows to always get the largest diagonal element.
This is in contrast to full pivoting (see below) which can switch both rows
and columns to obtain the largest diagonal element. Partial pivoting gives
A = LU where U = Mn−1Pn−1 . . .M1P1A and L = P1L1 . . . Pn−1Ln−1 where
U is upper triangular, but L is a permutation of a lower triangular matrix.
It turns out that we can write L as L = P1 . . . Pn−1L

P
1 . . . LP

n−1 where each
LP
k = I + (Pn−1 . . . Pk+1mk)eTk has the same form as Lk. Thus, we can write

PA = LPU where LP = LP
1 . . . LP

n−1 is lower triangular and P = Pn−1 . . . P1 is
the total permutation matrix.

Full pivoting

In this case, when we are in the kth step of the Gaussian Elimination/LU
procedure, we pick the pivot element among the entire (n− k + 1)× (n− k + 1)
lower rightmost submatrix of A. For example, if k = 2 and Ax = b
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In this case, we can bring (−8) to the pivot position a22 by permuting both rows
2− 3 and columns 2− 4. Naturally, we will respectively swap rows 2− 3 of the
RHS, and rows 2 − 4 of the vector of unknowns. Thus, the equivalent system
becomes


1 −1 5 2
0 −8 1 4
0 1 3 0
0 3 0 −6


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x4
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4
8
7
2


This process is encoded in the LU factorization using two permutation matrices

P and Q such that PAQ = LU . The solution is then computed via

Ax = b⇒ PAQQT︸ ︷︷ ︸
=I

x = Pb⇒ (LU)(QTx) = Pb

1. Solve Ly = Pb using forward substitution.

2. Solve Uz = y using back substitution.

3. Finally, QTx = z ⇒ QQTx = Qz ⇒ x = Qz gives the solution!

To summarize:

• Partial pivoting permutes rows, such that the pivot element in the kth
iteration is the largest number in the (n− k + 1) lower entries of the kth
column. It is written, in the context of LU decomposition as

PA = LU (P = permutation)

• Full pivoting selects the pivot element in the kth iteration as the largest
element of the (n− k + 1)× (n− k + 1) lower rightmost sub-matrix of A.
It operates by permuting rows and columns and leads to an LU decom-
position of

PAQ = LU

However, there are certain categories of matrices for which we can safely use
Gaussian elimination or LU decomposition without the need for pivoting (i.e.,
the pivot elements will never be problematically small).
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Definition: A matrix A is called diagonally dominant by columns if the mag-
nitude of every diagonal element is larger than the sum of the magnitudes of all
other entries in the same column, i.e., for every i = 1, 2, . . . , n we have

|aii| >
∑
j 6=i

|aji|

If the diagonal element exceeds in magnitude the sum of magnitudes of all other
elements in its row, i.e., for every i = 1, 2, . . . , n we have

|aii| >
∑
j 6=i

|aij |

then the matrix is called diagonally dominant by rows.

Definition: A symmetric matrix A ∈ Rn×n is called positive definite (in short
SPD for “symmetric positive definite”), if for any x ∈ Rn, x 6= 0 we have
xTAx > 0. If for any x ∈ Rn, x 6= 0 we have xTAx ≥ 0, the matrix is called
positive semi-definite. If the respective properties are xTAx < 0 (or xTAx ≤ 0)
the matrix is called negative (semi) definite.

Definition: The kth leading principal minor of a matrix A ∈ Rn×n is the
determinant of the top-leftmost k × k sub-matrix of A. Thus, if we denote this
minor by Mk:

M1 = |a11|, M2 =

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ , . . . Mk =

∣∣∣∣∣∣∣
a11 . . . a1k
...

...
ak1 . . . akk

∣∣∣∣∣∣∣
Theorem 1. If all leading principal minors (i.e., for k = 1, 2, 3, . . . , n) of the
symmetric matrix A are positive, then A is positive definite. If Mk < 0 for
k = odd and Mk > 0 for k = even, then A is negative definite.

Theorem 2. Pivoting is not necessary when A is diagonally dominant by
columns, or symmetric and positive (or negative) definite.

These “special” classes of matrices (which appear quite often in engineering
and applied sciences) not only make LU decomposition more robust, but also
open some additional possibilities for solving Ax = b.

Iterative methods for linear systems

The general idea is similar to the philosophy of iterative methods we saw for
nonlinear equations, i.e., we proceed as follows:
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• We write a (matrix) equation

x = Tx + c

in such a way that this equation is equivalent to Ax = b.

• We start with an initial guess x(0) for the solution of Ax = b.

• We iterate

x(k+1) = Tx(k) + c

• If properly designed the sequence x(0), x(1), . . . , x(k), . . . converges to x?,
which satisfies x? = Tx? + c and consequently Ax? = b.

The Jacobi Method

We decompose

A = D︸︷︷︸
diagonal

− L︸︷︷︸
lower triangular

− U︸︷︷︸
upper triangular

Ax = b

⇒ (D − L− U)x = b

⇒ Dx = (L + U)x + b

⇒ x = D−1(L + U)︸ ︷︷ ︸
T

x + D−1b︸ ︷︷ ︸
c

(x = Tx + c)

Iteration: x(k+1) = D−1(L + U)x(k) + D−1b or Dx(k+1) = (L + U)x(k) + b
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