CS412: Lecture \#18

Mridul Aanjaneya

March 24, 2015

Solving $A x=b$:

- Without pivoting:

$$
A x=L \underbrace{U x}_{=y}=b
$$

1. Solve $L y=b$ through forward substitution.
2. Solve $U x=y$ through back substitution to obtain the solution x.

Note that if we have multiple systems $A x_{i}=b_{i}$, we only need to incur the cost of computing an $L U$ decomposition of A once.

- With pivoting:

$$
A x=b \Leftrightarrow P A x=P b
$$

1. Solve $L y=P b$ using forward substitution.
2. Solve $U x=y$ using backward substitution to obtain the solution x.

Note that switching two rows twice puts the rows back, so P is its own inverse. Also note that P is an orthogonal matrix, i.e., $P^{-1}=P^{T}$, so in general $P^{-1}=P^{T}=P$. The process shown above is called partial pivoting because it switches rows to always get the largest diagonal element. This is in contrast to full pivoting (see below) which can switch both rows and columns to obtain the largest diagonal element. Partial pivoting gives $A=L U$ where $U=M_{n-1} P_{n-1} \ldots M_{1} P_{1} A$ and $L=P_{1} L_{1} \ldots P_{n-1} L_{n-1}$ where U is upper triangular, but L is a permutation of a lower triangular matrix. It turns out that we can write L as $L=P_{1} \ldots P_{n-1} L_{1}^{P} \ldots L_{n-1}^{P}$ where each $L_{k}^{P}=I+\left(P_{n-1} \ldots P_{k+1} m_{k}\right) e_{k}^{T}$ has the same form as L_{k}. Thus, we can write $P A=L^{P} U$ where $L^{P}=L_{1}^{P} \ldots L_{n-1}^{P}$ is lower triangular and $P=P_{n-1} \ldots P_{1}$ is the total permutation matrix.

Full pivoting

In this case, when we are in the k th step of the Gaussian Elimination/ $L U$ procedure, we pick the pivot element among the entire $(n-k+1) \times(n-k+1)$ lower rightmost submatrix of A. For example, if $k=2$ and $A x=b$

$$
\left[\begin{array}{cccc}
1 & 2 & 5 & -1 \\
0 & 0 & 3 & 1 \\
0 & 4 & 1 & -8 \\
0 & -6 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
4 \\
7 \\
8 \\
2
\end{array}\right]
$$

In this case, we can bring (-8) to the pivot position a_{22} by permuting both rows $2-3$ and columns $2-4$. Naturally, we will respectively swap rows $2-3$ of the RHS, and rows $2-4$ of the vector of unknowns. Thus, the equivalent system becomes

$$
\left[\begin{array}{cccc}
1 & -1 & 5 & 2 \\
0 & -8 & 1 & 4 \\
0 & 1 & 3 & 0 \\
0 & 3 & 0 & -6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{4} \\
x_{3} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
8 \\
7 \\
2
\end{array}\right]
$$

This process is encoded in the $L U$ factorization using two permutation matrices P and Q such that $P A Q=L U$. The solution is then computed via

$$
A x=b \Rightarrow P A \underbrace{Q Q^{T}}_{=I} x=P b \Rightarrow(L U)\left(Q^{T} x\right)=P b
$$

1. Solve $L y=P b$ using forward substitution.
2. Solve $U z=y$ using back substitution.
3. Finally, $Q^{T} x=z \Rightarrow Q Q^{T} x=Q z \Rightarrow x=Q z$ gives the solution!

To summarize:

- Partial pivoting permutes rows, such that the pivot element in the k th iteration is the largest number in the $(n-k+1)$ lower entries of the k th column. It is written, in the context of $L U$ decomposition as

$$
P A=L U \quad(P=\text { permutation })
$$

- Full pivoting selects the pivot element in the k th iteration as the largest element of the $(n-k+1) \times(n-k+1)$ lower rightmost sub-matrix of A. It operates by permuting rows and columns and leads to an $L U$ decomposition of

$$
P A Q=L U
$$

However, there are certain categories of matrices for which we can safely use Gaussian elimination or $L U$ decomposition without the need for pivoting (i.e., the pivot elements will never be problematically small).

Definition: A matrix A is called diagonally dominant by columns if the magnitude of every diagonal element is larger than the sum of the magnitudes of all other entries in the same column, i.e., for every $i=1,2, \ldots, n$ we have

$$
\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{j i}\right|
$$

If the diagonal element exceeds in magnitude the sum of magnitudes of all other elements in its row, i.e., for every $i=1,2, \ldots, n$ we have

$$
\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|
$$

then the matrix is called diagonally dominant by rows.
Definition: A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is called positive definite (in short SPD for "symmetric positive definite"), if for any $x \in \mathbb{R}^{n}, x \neq 0$ we have $x^{T} A x>0$. If for any $x \in \mathbb{R}^{n}, x \neq 0$ we have $x^{T} A x \geq 0$, the matrix is called positive semi-definite. If the respective properties are $x^{T} A x<0$ (or $x^{T} A x \leq 0$) the matrix is called negative (semi) definite.

Definition: The k th leading principal minor of a matrix $A \in \mathbb{R}^{n \times n}$ is the determinant of the top-leftmost $k \times k$ sub-matrix of A. Thus, if we denote this minor by M_{k} :

$$
M_{1}=\left|a_{11}\right|, \quad M_{2}=\left|\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|, \quad \ldots \quad M_{k}=\left|\begin{array}{ccc}
a_{11} & \ldots & a_{1 k} \\
\vdots & & \vdots \\
a_{k 1} & \ldots & a_{k k}
\end{array}\right|
$$

Theorem 1. If all leading principal minors (i.e., for $k=1,2,3, \ldots, n$) of the symmetric matrix A are positive, then A is positive definite. If $M_{k}<0$ for $k=$ odd and $M_{k}>0$ for $k=$ even, then A is negative definite.

Theorem 2. Pivoting is not necessary when A is diagonally dominant by columns, or symmetric and positive (or negative) definite.

These "special" classes of matrices (which appear quite often in engineering and applied sciences) not only make $L U$ decomposition more robust, but also open some additional possibilities for solving $A x=b$.

Iterative methods for linear systems

The general idea is similar to the philosophy of iterative methods we saw for nonlinear equations, i.e., we proceed as follows:

- We write a (matrix) equation

$$
x=T x+c
$$

in such a way that this equation is equivalent to $A x=b$.

- We start with an initial guess $x^{(0)}$ for the solution of $A x=b$.
- We iterate

$$
x^{(k+1)}=T x^{(k)}+c
$$

- If properly designed the sequence $x^{(0)}, x^{(1)}, \ldots, x^{(k)}, \ldots$ converges to x^{\star}, which satisfies $x^{\star}=T x^{\star}+c$ and consequently $A x^{\star}=b$.

The Jacobi Method

We decompose

$$
\begin{gathered}
A=\underbrace{D}_{\text {diagonal }}-\underbrace{L}_{\text {lower triangular }}-\underbrace{U}_{\text {upper triangular }} \\
\qquad \begin{array}{r}
A x=b \\
\Rightarrow(D-L-U) x=b \\
\Rightarrow D x=(L+U) x+b \\
\Rightarrow x=\underbrace{D^{-1}(L+U)}_{T} x+\underbrace{D^{-1} b}_{c} \quad(x=T x+c)
\end{array}
\end{gathered}
$$

Iteration: $x^{(k+1)}=D^{-1}(L+U) x^{(k)}+D^{-1} b$ or $D x^{(k+1)}=(L+U) x^{(k)}+b$

