CS412: Lecture \#14

Mridul Aanjaneya

March 5, 2015

Cubic Hermite Splines

Let us assume a number of x-locations $x_{1}<x_{2}<\ldots<x_{n}$ and let us make the hypothesis that we know both f and f^{\prime} at every location x_{i}. We denote these values by $y_{i}=f\left(x_{i}\right)$ and $y_{i}^{\prime}=f^{\prime}\left(x_{i}\right)$, for $i=1,2, \ldots, n$. As with other methods based on piecewise polynomials, we construct the interpolant as

$$
s(x)=\left\{\begin{array}{c}
s_{1}(x), x \in I_{1} \\
s_{2}(x), x \in I_{2} \\
\vdots \\
s_{n-1}(x), x \in I_{n-1}
\end{array}\right.
$$

where $I_{k}=\left[x_{k}, x_{k+1}\right]$. In this case, each individual $s_{k}(x)$ is constructed to match both the function values y_{k}, y_{k+1} as well as the derivatives $y_{k}^{\prime}, y_{k+1}^{\prime}$ at the endpoints of I_{k}. In detail:

$$
\begin{equation*}
s_{k}\left(x_{k}\right)=y_{k}, \quad s_{k}\left(x_{k+1}\right)=y_{k+1}, \quad s_{k}^{\prime}\left(x_{k}\right)=y_{k}^{\prime}, \quad s_{k}^{\prime}\left(x_{k+1}\right)=y_{k+1}^{\prime} \tag{1}
\end{equation*}
$$

Since $s_{k}(x)=a_{3}^{(k)} x^{3}+a_{2}^{(k)} x^{2}+a_{1}^{(k)} x+a_{0}^{(k)}$ has four unknown coefficients, equation (1) can uniquely define the appropriate values of $a_{3}^{(k)}, a_{2}^{(k)}, a_{1}^{(k)}, a_{0}^{(k)}$.

Note that equation (1) guarantees that $s(x)$ is continuous with continuous derivatives (e.g., a C^{1} function). However, we do not strictly enforce that the $2 n d$ derivative should be continuous, and in fact it generally will not be.

The most straightforward method for determining the coefficients of $s_{k}(x)=$ $a_{3}^{(k)} x^{3}+a_{2}^{(k)} x^{2}+a_{1}^{(k)} x+a_{0}^{(k)}$ mimics the Vandermonde approach for polynomial interpolation:

$$
\begin{aligned}
s_{k}\left(x_{k}\right)=y_{k} & \Rightarrow a_{3}^{(k)} x_{k}^{3}+a_{2}^{(k)} x_{k}^{2}+a_{1}^{(k)} x_{k}+a_{0}^{(k)}=y_{k} \\
s_{k}\left(x_{k+1}\right)=y_{k+1} & \Rightarrow a_{3}^{(k)} x_{k+1}^{3}+a_{2}^{(k)} x_{k+1}^{2}+a_{1}^{(k)} x_{k+1}+a_{0}^{(k)}=y_{k+1} \\
s_{k}^{\prime}\left(x_{k}\right)=y_{k}^{\prime} & \Rightarrow 3 a_{3}^{(k)} x_{k}^{2}+2 a_{2}^{(k)} x_{k}+a_{1}^{(k)}=y_{k}^{\prime} \\
s_{k}^{\prime}\left(x_{k+1}\right)=y_{k+1}^{\prime} & \Rightarrow 3 a_{3}^{(k)} x_{k+1}^{2}+2 a_{2}^{(k)} x_{k+1}+a_{1}^{(k)}=y_{k+1}^{\prime}
\end{aligned}
$$

$$
\Rightarrow\left[\begin{array}{cccc}
x_{k}^{3} & x_{k}^{2} & x_{k} & 1 \\
x_{k+1}^{3} & x_{k+1}^{2} & x_{k+1} & 1 \\
3 x_{k}^{2} & 2 x_{k} & 1 & 0 \\
3 x_{k+1}^{2} & 2 x_{k+1} & 1 & 0
\end{array}\right]\left[\begin{array}{c}
a_{3}^{(k)} \\
a_{2}^{(k)} \\
a_{1}^{(k)} \\
a_{0}^{(k)}
\end{array}\right]=\left[\begin{array}{c}
y_{k} \\
y_{k+1} \\
y_{k}^{\prime} \\
y_{k+1}^{\prime}
\end{array}\right]
$$

The second method attempts to mimic the Lagrange interpolation approach, where we wrote

$$
\mathcal{P}_{n-1}(x)=y_{0} l_{0}(x)+y_{1} l_{1}(x)+\ldots+y_{n} l_{n}(x)
$$

where

$$
l_{i}\left(x_{j}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

What if we could do something similar here? Can we write

$$
s_{k}(x)=y_{k} q_{00}(x)+y_{k+1} q_{01}(x)+y_{k}^{\prime} q_{10}(x)+y_{k+1}^{\prime} q_{11}(x)
$$

Yes, if we have: Note that all $q_{i j}$'s are cubic polynomials.

$$
\begin{array}{c|c|c|c}
q_{00}\left(x_{k}\right)=1 & q_{10}\left(x_{k}\right)=0 & q_{01}\left(x_{k}\right)=0 & q_{11}\left(x_{k}\right)=0 \\
q_{00}\left(x_{k+1}\right)=0 & q_{10}\left(x_{k+1}\right)=0 & q_{01}\left(x_{k+1}\right)=1 & q_{11}\left(x_{k+1}\right)=0 \\
q_{00}^{\prime}\left(x_{k}\right)=0 & q_{10}^{\prime}\left(x_{k}\right)=1 & q_{01}^{\prime}\left(x_{k}\right)=0 & q_{11}^{\prime}\left(x_{k}\right)=0 \\
q_{00}^{\prime}\left(x_{k+1}\right)=0 & q_{10}^{\prime}\left(x_{k+1}\right)=0 & q_{01}^{\prime}\left(x_{k+1}\right)=0 & q_{11}^{\prime}\left(x_{k+1}\right)=1
\end{array}
$$

In the special case where $x_{k}=0, x_{k+1}=1$, these functions are symbolized with $h_{i j}(x)$ and called the canonical Hermite basis functions. Thus, in that case,

$$
s_{k}(x)=y_{k} h_{00}(x)+y_{k+1} h_{01}(x)+y_{k}^{\prime} h_{10}(x)+y_{k+1}^{\prime} h_{11}(x)
$$

In this case, we can either solve a 4×4 system for the coefficients of each $h_{i j}(x)$, or construct it using simple algebraic arguments, e.g.,

$$
\begin{aligned}
h_{11}(0)=h_{11}^{\prime}(0)=0 & \Rightarrow x^{2} \text { is a factor of } h_{11}(x) \\
h_{11}(1)=0 & \Rightarrow x-1 \text { is a factor of } h_{11}(x)
\end{aligned}
$$

i.e., $h_{11}(x)=C x^{2}(x-1)=C\left(x^{3}-x^{2}\right) \Rightarrow h_{11}^{\prime}(x)=C\left(3 x^{2}-2 x\right)$. Given that $h_{11}^{\prime}(1)=1=C(3-2)=C \Rightarrow h_{11}(x)=x^{3}-x^{2}$. The four basis polynomials are similarly derived to be:

$$
\begin{aligned}
h_{00}(x) & =2 x^{3}-3 x^{2}+1 \\
h_{10}(x) & =x^{3}-2 x^{2}+x \\
h_{01}(x) & =-2 x^{3}+3 x^{2} \\
h_{11}(x) & =x^{3}-x^{2}
\end{aligned}
$$

In the more general case where $I_{k}=\left[x_{k}, x_{k+1}\right]$ (instead of $[0,1]$), we can obtain the basis polynomials using a change of variable $t=\left(x-x_{k}\right) /\left(x_{k+1}-x_{k}\right)$ as follows:
$s_{k}(x)=y_{k} \underbrace{h_{00}(t)}_{q_{00}(x)}+y_{k+1} \underbrace{h_{01}(t)}_{q_{01}(x)}+y_{k}^{\prime} \underbrace{\left(x_{k+1}-x_{k}\right) h_{10}(t)}_{q_{10}(x)}+y_{k+1}^{\prime} \underbrace{\left(x_{k+1}-x_{k}\right) h_{11}(t)}_{q_{11}(x)}$
The last, and quite common, approach for generating the Hermite spline is using tools similar to Newton interpolation. Remember, when interpolating through $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$, we obtain

$$
\begin{aligned}
\mathcal{P}_{3}(x) & =f\left[x_{0}\right] \cdot 1+f\left[x_{0}, x_{1}\right] \cdot\left(x-x_{0}\right)+f\left[x_{0}, x_{1}, x_{2}\right] \cdot\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& +f\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \cdot\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)
\end{aligned}
$$

The idea is as follows: perform Newton interpolation through the points $\left(x_{k}^{\star}, y_{k}^{\star}\right)$, $\left(x_{k}, y_{k}\right),\left(x_{k+1}, y_{k+1}\right),\left(x_{k+1}^{\star}, y_{k+1}^{\star}\right)$, where $x_{k}^{\star}=x_{k}-\varepsilon, x_{k+1}^{\star}=x_{k+1}+\varepsilon$.

We will compute this interpolant using the Newton method, and ultimately set $\varepsilon \rightarrow 0$ such that x_{k}^{\star} converges onto x_{k}, and x_{k+1}^{\star} converges onto x_{k+1}, respectively. Thus,

$$
\begin{aligned}
s_{k}(x) & =f\left[x_{k}^{\star}\right]+f\left[x_{k}^{\star}, x_{k}\right]\left(x-x_{k}^{\star}\right)+f\left[x_{k}^{\star}, x_{k}, x_{k+1}\right]\left(x-x_{k}^{\star}\right)\left(x-x_{k}\right) \\
& +f\left[x_{k}^{\star}, x_{k}, x_{k+1}, x_{k+1}^{\star}\right]\left(x-x_{k}^{\star}\right)\left(x-x_{k}\right)\left(x-x_{k+1}\right)
\end{aligned}
$$

Taking the limit as $\varepsilon \rightarrow 0$

$$
\begin{aligned}
s_{k}(x) & =\left(\lim _{x_{k}^{\star} \rightarrow x_{k}} f\left[x_{k}^{\star}\right]\right) \\
& +\left(\lim _{x_{k}^{\star} \rightarrow x_{k}} f\left[x_{k}^{\star}, x_{k}\right]\right)\left(x-x_{k}\right) \\
& +\left(\lim _{x_{k}^{\star} \rightarrow x_{k}} f\left[x_{k}^{\star}, x_{k}, x_{k+1}\right]\right)\left(x-x_{k}\right)^{2} \\
& +\binom{\lim _{x_{k}^{\star} \rightarrow x_{k}} f\left[x_{k}^{\star}, x_{k}, x_{k+1}, x_{k+1}^{\star}\right]}{x_{k+1}^{\star} \rightarrow x_{k+1}}\left(x-x_{k}\right)^{2}\left(x-x_{k+1}\right)
\end{aligned}
$$

We use the shorthand notation $f\left[x_{k}, x_{k}\right]=\lim _{x_{k}^{\star} \rightarrow x_{k}} f\left[x_{k}^{\star}, x_{k}\right]$ and construct the finite difference table as usual.

x_{k}^{\star}	$f\left[x_{k}^{\star}\right]$			
x_{k}	$f\left[x_{k}\right]$	$f\left[x_{k}^{\star}, x_{k}\right]$		
x_{k+1}	$f\left[x_{k+1}\right]$	$f\left[x_{k}, x_{k+1}\right]$	$f\left[x_{k}^{\star}, x_{k}, x_{k+1}\right]$	
x_{k+1}^{\star}	$f\left[x_{k+1}^{\star}\right]$	$f\left[x_{k+1}, x_{k+1}^{\star}\right]$	$f\left[x_{k}, x_{k+1}, x_{k+1}^{\star}\right]$	$f\left[x_{k}^{\star}, x_{k}, x_{k+1}, x_{k+1}^{\star}\right]$

When $\varepsilon \rightarrow 0$, the quantities in this table that involve x_{k}^{\star} or x_{k+1}^{\star} may need to be expressed through limits, e.g.,

$$
\begin{gathered}
x_{k}^{\star} \rightarrow x_{k}, \quad x_{k+1}^{\star} \rightarrow x_{k+1}, \quad f\left[x_{k}^{\star}\right]=y_{k}^{\star} \rightarrow y_{k}, \quad f\left[x_{k+1}^{\star}\right]=y_{k+1}^{\star} \rightarrow y_{k+1} \\
f\left[x_{k}^{\star}, x_{k}\right]=\frac{f\left[x_{k}\right]-f\left[x_{k}^{\star}\right]}{x_{k}-x_{k}^{\star}} \quad \xrightarrow{x_{k}^{\star} \rightarrow x_{k}} \quad f^{\prime}\left(x_{k}\right)=y_{k}^{\prime} \\
f\left[x_{k+1}, x_{k+1}^{\star}\right]=\frac{f\left[x_{k+1}^{\star}\right]-f\left[x_{k+1}\right]}{x_{k+1}^{\star}-x_{k+1}} \quad \xrightarrow{x_{k+1}^{\star} \rightarrow x_{k+1}} \quad f^{\prime}\left(x_{k+1}\right)=y_{k+1}^{\prime}
\end{gathered}
$$

Thus, the table gets filled as follows:

x_{k}	y_{k}			
x_{k}	y_{k}	y_{k}^{\prime}		
x_{k+1}	y_{k+1}	$f\left[x_{k}, x_{k+1}\right]$	$f\left[x_{k}^{\star}, x_{k}, x_{k+1}\right]$	
x_{k+1}	y_{k+1}	y_{k+1}^{\prime}	$f\left[x_{k}, x_{k+1}, x_{k+1}^{\star}\right]$	$f\left[x_{k}^{\star}, x_{k}, x_{k+1}, x_{k+1}^{\star}\right]$

The remaining divided differences are computed normally using the recursive definition. Often times, we skip the "stars" on x_{k} 's and use the simpler notation $f\left[x_{k}, x_{k}\right], f\left[x_{k}, x_{k}, x_{k+1}, x_{k+1}\right]$, etc.

