CS412: Lecture #14

Mridul Aanjaneya

March 5, 2015

Cubic Hermite Splines

Let us assume a number of x-locations $x_1 < x_2 < \ldots < x_n$ and let us make the hypothesis that we know both f and f' at every location x_i . We denote these values by $y_i = f(x_i)$ and $y'_i = f'(x_i)$, for $i = 1, 2, \ldots, n$. As with other methods based on piecewise polynomials, we construct the interpolant as

$$s(x) = \begin{cases} s_1(x), x \in I_1 \\ s_2(x), x \in I_2 \\ \vdots \\ s_{n-1}(x), x \in I_{n-1} \end{cases}$$

where $I_k = [x_k, x_{k+1}]$. In this case, each individual $s_k(x)$ is constructed to match both the function values y_k, y_{k+1} as well as the derivatives y'_k, y'_{k+1} at the endpoints of I_k . In detail:

$$s_k(x_k) = y_k, \quad s_k(x_{k+1}) = y_{k+1}, \quad s'_k(x_k) = y'_k, \quad s'_k(x_{k+1}) = y'_{k+1}$$
(1)

Since $s_k(x) = a_3^{(k)}x^3 + a_2^{(k)}x^2 + a_1^{(k)}x + a_0^{(k)}$ has four unknown coefficients, equation (1) can uniquely define the appropriate values of $a_3^{(k)}, a_2^{(k)}, a_1^{(k)}, a_0^{(k)}$.

Note that equation (1) guarantees that s(x) is *continuous* with continuous derivatives (e.g., a C^1 function). However, we do not strictly enforce that the 2nd derivative should be continuous, and in fact it generally will not be.

The most straightforward method for determining the coefficients of $s_k(x) = a_3^{(k)}x^3 + a_2^{(k)}x^2 + a_1^{(k)}x + a_0^{(k)}$ mimics the Vandermonde approach for polynomial interpolation:

$$s_{k}(x_{k}) = y_{k} \Rightarrow a_{3}^{(k)}x_{k}^{3} + a_{2}^{(k)}x_{k}^{2} + a_{1}^{(k)}x_{k} + a_{0}^{(k)} = y_{k}$$

$$s_{k}(x_{k+1}) = y_{k+1} \Rightarrow a_{3}^{(k)}x_{k+1}^{3} + a_{2}^{(k)}x_{k+1}^{2} + a_{1}^{(k)}x_{k+1} + a_{0}^{(k)} = y_{k+1}$$

$$s_{k}'(x_{k}) = y_{k}' \Rightarrow 3a_{3}^{(k)}x_{k}^{2} + 2a_{2}^{(k)}x_{k} + a_{1}^{(k)} = y_{k}'$$

$$s_{k}'(x_{k+1}) = y_{k+1}' \Rightarrow 3a_{3}^{(k)}x_{k+1}^{2} + 2a_{2}^{(k)}x_{k+1} + a_{1}^{(k)} = y_{k+1}'$$

$\begin{bmatrix} 3x_{k+1}^2 & 2x_{k+1} & 1 & 0 \end{bmatrix} \begin{bmatrix} a_1 \\ a_0^{(k)} \end{bmatrix} \begin{bmatrix} y_{k+1}^* \end{bmatrix}$	\Rightarrow	$\left[\begin{array}{c} x_{k}^{3} \\ x_{k+1}^{3} \\ 3x_{k}^{2} \\ 3x_{k+1}^{2} \end{array}\right]$	$ \begin{array}{c} x_k^2 \\ x_{k+1}^2 \\ 2x_k \\ 2x_{k+1} \end{array} $	$\begin{array}{c} x_k \\ x_{k+1} \\ 1 \\ 1 \end{array}$	$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$	$\left[\begin{array}{c} a_{3}^{(k)} \\ a_{2}^{(k)} \\ a_{1}^{(k)} \\ a_{0}^{(k)} \end{array}\right]$	=	$\left[egin{array}{c} y_k \ y_{k+1} \ y_k' \ y_{k+1}' \end{array} ight]$	
--	---------------	--	---	---	--	--	---	--	--

The second method attempts to mimic the Lagrange interpolation approach, where we wrote

$$\mathcal{P}_{n-1}(x) = y_0 l_0(x) + y_1 l_1(x) + \ldots + y_n l_n(x)$$

where

$$l_i(x_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

What if we could do something similar here? Can we write

$$s_k(x) = y_k q_{00}(x) + y_{k+1} q_{01}(x) + y'_k q_{10}(x) + y'_{k+1} q_{11}(x)$$

Yes, if we have: Note that all q_{ij} 's are *cubic* polynomials.

In the special case where $x_k = 0, x_{k+1} = 1$, these functions are symbolized with $h_{ij}(x)$ and called the *canonical Hermite basis functions*. Thus, in that case,

$$s_k(x) = y_k h_{00}(x) + y_{k+1} h_{01}(x) + y'_k h_{10}(x) + y'_{k+1} h_{11}(x)$$

In this case, we can either solve a 4×4 system for the coefficients of each $h_{ij}(x)$, or construct it using simple algebraic arguments, e.g.,

$$h_{11}(0) = h'_{11}(0) = 0 \quad \Rightarrow \quad x^2 \text{ is a factor of } h_{11}(x)$$
$$h_{11}(1) = 0 \quad \Rightarrow \quad x - 1 \text{ is a factor of } h_{11}(x)$$

i.e., $h_{11}(x) = Cx^2(x-1) = C(x^3 - x^2) \Rightarrow h'_{11}(x) = C(3x^2 - 2x)$. Given that $h'_{11}(1) = 1 = C(3-2) = C \Rightarrow h_{11}(x) = x^3 - x^2$. The four basis polynomials are similarly derived to be:

$$h_{00}(x) = 2x^{3} - 3x^{2} + 1$$

$$h_{10}(x) = x^{3} - 2x^{2} + x$$

$$h_{01}(x) = -2x^{3} + 3x^{2}$$

$$h_{11}(x) = x^{3} - x^{2}$$

In the more general case where $I_k = [x_k, x_{k+1}]$ (instead of [0, 1]), we can obtain the basis polynomials using a change of variable $t = (x - x_k)/(x_{k+1} - x_k)$ as follows:

$$s_{k}(x) = y_{k} \underbrace{h_{00}(t)}_{q_{00}(x)} + y_{k+1} \underbrace{h_{01}(t)}_{q_{01}(x)} + y'_{k} \underbrace{(x_{k+1} - x_{k})h_{10}(t)}_{q_{10}(x)} + y'_{k+1} \underbrace{(x_{k+1} - x_{k})h_{11}(t)}_{q_{11}(x)}$$

The last, and quite common, approach for generating the Hermite spline is using tools similar to Newton interpolation. Remember, when interpolating through $(x_0, y_0), (x_1, y_1), (x_2, y_2), (x_3, y_3)$, we obtain

$$\mathcal{P}_3(x) = f[x_0] \cdot 1 + f[x_0, x_1] \cdot (x - x_0) + f[x_0, x_1, x_2] \cdot (x - x_0)(x - x_1)$$

+ $f[x_0, x_1, x_2, x_3] \cdot (x - x_0)(x - x_1)(x - x_2)$

The idea is as follows: perform Newton interpolation through the points $(x_k^{\star}, y_k^{\star})$, (x_k, y_k) , (x_{k+1}, y_{k+1}) , $(x_{k+1}^{\star}, y_{k+1}^{\star})$, where $x_k^{\star} = x_k - \varepsilon$, $x_{k+1}^{\star} = x_{k+1} + \varepsilon$.

We will compute this interpolant using the Newton method, and ultimately set $\varepsilon \to 0$ such that x_k^* converges onto x_k , and x_{k+1}^* converges onto x_{k+1} , respectively. Thus,

$$s_k(x) = f[x_k^{\star}] + f[x_k^{\star}, x_k](x - x_k^{\star}) + f[x_k^{\star}, x_k, x_{k+1}](x - x_k^{\star})(x - x_k) + f[x_k^{\star}, x_k, x_{k+1}, x_{k+1}^{\star}](x - x_k^{\star})(x - x_k)(x - x_{k+1})$$

Taking the limit as $\varepsilon \to 0$

$$s_{k}(x) = \left(\lim_{x_{k}^{\star} \to x_{k}} f[x_{k}^{\star}]\right) \\ + \left(\lim_{x_{k}^{\star} \to x_{k}} f[x_{k}^{\star}, x_{k}]\right) (x - x_{k}) \\ + \left(\lim_{x_{k}^{\star} \to x_{k}} f[x_{k}^{\star}, x_{k}, x_{k+1}]\right) (x - x_{k})^{2} \\ + \left(\lim_{x_{k}^{\star} \to x_{k}} f[x_{k}^{\star}, x_{k}, x_{k+1}, x_{k+1}^{\star}]\right) (x - x_{k})^{2} (x - x_{k+1})$$

We use the shorthand notation $f[x_k, x_k] = \lim_{x_k^\star \to x_k} f[x_k^\star, x_k]$ and construct the finite difference table as usual.

x_k^\star	$f[x_k^\star]$			
x_k	$f[x_k]$	$f[x_k^\star, x_k]$		
x_{k+1}	$f[x_{k+1}]$	$f[x_k, x_{k+1}]$	$f[x_k^\star, x_k, x_{k+1}]$	
x_{k+1}^{\star}	$f[x_{k+1}^{\star}]$	$f[x_{k+1}, x_{k+1}^{\star}]$	$f[x_k, x_{k+1}, x_{k+1}^{\star}]$	$f[x_k^{\star}, x_k, x_{k+1}, x_{k+1}^{\star}]$

When $\varepsilon \to 0$, the quantities in this table that involve x_k^{\star} or x_{k+1}^{\star} may need to be expressed through limits, e.g.,

$$x_k^{\star} \to x_k, \quad x_{k+1}^{\star} \to x_{k+1}, \quad f[x_k^{\star}] = y_k^{\star} \to y_k, \quad f[x_{k+1}^{\star}] = y_{k+1}^{\star} \to y_{k+1}$$

$$f[x_k^{\star}, x_k] = \frac{f[x_k] - f[x_k^{\star}]}{x_k - x_k^{\star}} \xrightarrow{x_k^{\star} \to x_k} f'(x_k) = y'_k$$
$$f[x_{k+1}, x_{k+1}^{\star}] = \frac{f[x_{k+1}^{\star}] - f[x_{k+1}]}{x_{k+1}^{\star} - x_{k+1}} \xrightarrow{x_{k+1}^{\star} \to x_{k+1}} f'(x_{k+1}) = y'_{k+1}$$

Thus, the table gets filled as follows:

x_k	y_k			
x_k	y_k	y'_k		
x_{k+1}	y_{k+1}	$f[x_k, x_{k+1}]$	$f[x_k^\star, x_k, x_{k+1}]$	
x_{k+1}	y_{k+1}	y'_{k+1}	$f[x_k, x_{k+1}, x_{k+1}^{\star}]$	$f[x_k^{\star}, x_k, x_{k+1}, x_{k+1}^{\star}]$

The remaining divided differences are computed normally using the recursive definition. Often times, we skip the "stars" on x_k 's and use the simpler notation $f[x_k, x_k]$, $f[x_k, x_k, x_{k+1}, x_{k+1}]$, etc.