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The Cubic Spline

As always, our goal in this interpolation task is to define a curve s(x) which
interpolates the n data points

(x1, y1), (x2, y2), . . . , (xn, yn) (where x1 < x2 < . . . < xn)

In the fashion of piecewise polynomials, we will define s(x) as a different cubic
polynomial sk(x) at each sub-interval Ik = [xk, xk+1], i.e.,

s(x) =


s1(x), x ∈ I1
s2(x), x ∈ I2

...
sn−1(x), x ∈ In−1

Each of the sk’s is a cubic polynomial:

sk(x) = a
(k)
3 x3 + a

(k)
2 x2 + a

(k)
1 x + a

(k)
0

where a
(k)
3 , a

(k)
2 , a

(k)
1 , a

(k)
0 are unknown coefficients. Since we have n−1 piecewise

polynomials, in total we shall have to determine 4(n − 1) = 4n − 4 unknown
coefficients. The points (x2, x3, . . . , xn−1) where the formula for s(x) changes
from one cubic polynomial (sk) to another (sk+1) are called knots.

Note: In some textbooks, the extreme points x1 and xn are also included in the
definition of what a knot is. We will stick with the definition we stated above.

The piecewise polynomial interpolation method described as cubic spline also
requires the neighboring polynomials sk and sk+1 to be joined at xk+1 with a
certain degree of smoothness. In detail:

• The curve should be continuous: sk(xk+1) = sk+1(xk+1)

• The derivative (slope) should be continuous: s′k(xk+1) = s′k+1(xk+1)

• The 2nd derivative should be continuous as well: s′′k(xk+1) = s′′k+1(xk+1)

(Note: If we force the next (3rd) derivative to match, this will force sk and sk+1

to be exactly identical.)
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When determining the unknown coefficients {a(j)i }, each of these 3 smoothness
constraints (for knots k = 2, 3, . . . , n − 1) needs to be satisfied, for a total of
3(n−2) = 3n−6 constraint equations. We should not forget that we additionally
want to interpolate all n data points, i.e.,

s(xi) = yi for i = 1, 2, . . . , n

In total, we have 3n − 6 + n = 4n − 6 total equations to satisfy, and 4n − 4
unknowns! Consequently, we will need 2 more equations to ensure that the
unknown coefficients will be uniquely determined. Several plausible options
exist on how to do that:

1. The “not-a-knot” approach: We stipulate that at the locations of the first
knot (x2) and last knot (xn−1) the third derivative of s(x) should also be
continuous, e.g.:

s′′′1 (x2) = s′′′2 (x2) and s′′′n−2(xn−1) = s′′′n−1(xn−1)

As we discussed before, these two additional constraints will effectively
cause s1(x) to be identical with s2(x), and sn−2(x) to coincide with
sn−1(x). In this sense, x2 and xn−1 are no longer “knots” in the sense
that the formula for s(x) “changes” at these points (hence the name).

2. Complete spline: If we have access to the derivative f ′ of the function
being sampled by the yi’s (i.e., yi = f(xi)), we can formulate the two
additional constraints as:

s′1(x1) = f ′(x1) and s′n−1(xn) = f ′(xn)

Note that qualitatively, using the complete spline approach is a better
utilization of the flexibility of the spline curve in matching yet one more
property of f . In contrast, the not-a-knot approach makes the spline “less
flexible” by removing two degrees of freedom, in order to obtain a unique
solution. However, we cannot always assume knowledge of f ′.

3. The natural cubic spline: We use the following two constraints:

s′′(x1) = 0 and s′′(xn) = 0

Thus, s(x) reaches the endpoints looking like a straight line (instead of a
curved one).

4. Periodic spline: The following two constraints are used:

s′(x1) = s′(xn) and s′′(x1) = s′′(xn)

This is useful when the underlying function f is also known to be periodical
over [a, b].
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Since s(x) is piecewise cubic, its second derivative s′′(x) is piecewise linear on
[x1, xn]. The linear Lagrange interpolation formula gives the following repre-
sentation for s′′(x) = s′′k(x) on [xk, xk+1]:

s′′k(x) = s′′(xk)
x− xk+1

xk − xk+1
+ s′′(xk+1)

x− xk

xk+1 − xk

Defining mk = s′′(xk) and hk = xk+1 − xk gives

s′′k(x) =
mk

hk
(xk+1 − x) +

mk+1

hk
(x− xk)

for xk ≤ x ≤ xk+1 and k = 1, 2, . . . , n− 1. Integrating the above equation twice
will introduce two constants of integration, and the result can be manipulated
so that it has the form:

sk(x) =
mk

6hk
(xk+1 − x)3 +

mk+1

6hk
(x− xk)3 + pk(xk+1 − x) + qk(x− xk) (1)

Substituting xk and xk+1 into equation (1) and using the values yk = sk(xk)
and yk+1 = sk(xk+1) yields the following equations that involve pk and qk
respectively:

yk =
mk

6
h2
k + pkhk and yk+1 =

mk+1

6
h2
k + qkhk

These two equations are easily solved for pk and qk, and when these values are
substituted into equation (1), the result is the following expression for the cubic
function sk(x):

sk(x) =
mk

6hk
(xk+1 − x)3 +

mk+1

6hk
(x− xk)3 +

(
yk
hk
− mkhk

6

)
(xk+1 − x)

+

(
yk+1

hk
− mk+1hk

6

)
(x− xk) (2)

Notice that equation (2) has been reduced to a form that involves only the
unknown coefficients {mk}. To find these values, we must use the derivative of
equation (2), which is

s′k(x) = −mk

2hk
(xk+1 − x)2 +

mk+1

2hk
(x− xk)2 −

(
yk
hk
− mkhk

6

)
+

yk+1

hk
− mk+1hk

6
(3)

Evaluating equation (3) at xk and simplifying the result yields:

s′k(xk) = −mk

3
hk −

mk+1

6
hk + dk, where dk =

yk+1 − yk
hk

(4)

Similarly, we can replace k by k − 1 in equation (3) to get the expression for
s′k−1(x) and evaluate it at xk to obtain

s′k−1(xk) =
mk

3
hk−1 +

mk−1

6
hk−1 + dk−1 (5)
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Now using the continuity of derivatives and equations (4) and (5) gives an
important relation involving mk−1, mk and mk+1:

hk−1mk−1 + 2(hk−1 + hk)mk + hkmk+1 = uk (6)

where uk = 6(dk − dk−1) for k = 2, . . . , n − 1. Observe that the unknowns in
equation (6) are the desired values {mk}, and the other terms are constants
obtained by performing simple arithmetic with the data points {xk, yk}. There-
fore, in reality, system (6) is an underdetermined system of n−2 linear equations
involving n unknowns. Hence, two additional equations must be supplied. They
are used to eliminate m1 and mn. Consider the natural cubic spline strategy
where m1 and mn are given (= 0). The first equation (for k = 2) of system (6)
is:

2(h1 + h2)m2 + h2m3 = u2 − h1m1 (7)

and similarly, the last equation is:

hn−2mn−2 + 2(hn−2 + hn−1)mn−1 = un−1 − hn−1mn (8)

Equations (7) and (8) with (6) used for k = 3, 4, . . . , n−2 form a tridiagonal (n−
2)× (n−2) linear system HM = V involving the coefficients m2,m3, . . . ,mn−1:

b2 c2
a3 b3 c3

. . .

an−3 bn−2 cn−2
an−2 bn−1




m2

m3

...
mn−2
mn−1

 =


v2
v3
...

vn−2
vn−1


After the coefficients {mk} are determined, the spline coefficients a

(j)
k for sk(x)

are computed using the formulas

a
(0)
k = yk, a

(1)
k = dk −

hk

6
(2mk + mk+1), a

(2)
k =

mk

2
, a

(3)
k =

mk+1 −mk

6hk

Error analysis

For simplicity, we will again assume that

h2 = h3 = . . . = hn−1 = h (hk = xk+1 − xk)

For the not-a-knot method, we have

|f(x)− s(x)| / 5

384
||f (4)||∞ · h4

The “approximate” inequality is used because the interpolation error can be
slightly larger near the endpoints of the interval [a, b]. This is a very comparable
result with the (non-smooth) piecewise cubic polynomial method:

|f(x)− s(x)| ≤ 9

384
||f (4)||∞ · h4
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Note though that the computation of the piecewise cubic method was very
local and simple (every interval could be independently evaluated) while the
computation of the coefficients of the cubic spline is more elaborate.
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