CS412: Lecture #12

Mridul Aanjaneya

February 26, 2015

Although using Chebyshev points mitigates some of the drawbacks of highorder polynomial interpolants, this is still a non-ideal solution, since:

- We do not always have the flexibility to pick the x_i 's.
- Polynomial interpolants of high degree typically require more than O(n) computational cost to construct.
- Local changes in the data points affect the entire extent of the interpolant.

Piecewise Polynomials

A better remedy is to use piecewise polynomials. Assume that the x-values $\{x_i\}_{i=1}^n$ are sorted in ascending order:

$$a = x_1 < x_2 < \ldots < x_n = b$$

Define $I_k = [x_k, x_{k+1}]$ and $h_k = |x_{k+1} - x_k|$. We also define the polynomials $s_1(x), s_2(x), \ldots, s_{n-1}(x)$ and use each of them to define the interpolant s(x) at the respective interval I_k :

$$s(x) = \begin{cases} s_1(x), x \in I_1 \\ s_2(x), x \in I_2 \\ \vdots \\ s_{n-1}(x), x \in I_{n-1} \end{cases}$$

The benefit of using piecewise polynomial interpolants is that each $s_k(x)$ can be relatively low order and thus, non-oscillatory and easier to compute. The simplest piecewise polynomial interpolant is a *piecewise linear* curve:

In this case, every s_k can be written out explicitly as:

$$s_k(x) = y_k + \frac{y_{k+1} - y_k}{x_{k+1} - x_k}(x - x_k)$$

The next step is to examine the error $e(x) = f(x) - s_k(x)$ in the interval I_k . From the theorem we presented in the last lecture, we have that, for any $x \in I_k$ there is a $\theta_k = \theta(x_k) \in I_k$ such that:

$$e(x) = f(x) - s_k(x) = \frac{f''(\theta)}{2} \underbrace{(x - x_k)(x - x_{k+1})}_{q(x)}$$
(1)

We are interested in the maximum value of |q(x)| in order to determine a bound for the error. q(x) is a quadratic function which crosses zero at x_k and x_{k+1} , thus the extreme value is obtained at the midpoint $x_m = (x_k + x_{k+1})/2$. Thus,

$$|q(x)| \le |q(x_m)| = \left(\frac{x_{k+1} - x_k}{2}\right)^2 = \frac{h_k^2}{4}$$

for all $x \in I_k$. Using equation (1) gives:

$$|f(x) - s_k(x)| \leq \max_{x \in I_k} \left| \frac{f''(x)}{2} \right| \cdot \max_{x \in I_k} |(x - x_k)(x - x_{k+1})|$$

$$= \max_{x \in I_k} \left| \frac{f''(x)}{2} \right| \cdot \frac{h_k^2}{4}$$

$$\Rightarrow |f(x) - s_k(x)| \leq \frac{1}{8} \max_{x \in I_k} |f''(x)| \cdot h_k^2$$

for all $x \in I_k$.

Additionally, if we assume all data points are equally spaced, i.e.,

$$h_1 = h_2 = \ldots = h_{n-1} = h = \left(\frac{b-a}{n-1}\right)$$

we can additionally write:

$$|f(x) - s(x)| \le \frac{1}{8} \max_{x \in [a,b]} |f''(x)| \cdot h^2$$

We often express the quantity on the right hand side using the "infinity norm" of a given function, defined as

$$||f||_{\infty} = \max_{x \in [a,b]} |f(x)|$$

Thus, using this notation:

$$|f(x) - s(x)| \le \frac{1}{8} ||f''||_{\infty} \cdot h^2$$

Note that

- As $h \to 0$, the maximum discrepancy between f and s vanishes (proportionally to h^2)
- As we introduce more points, the quality of the approximation increases consistently, since the criterion above only considers the second derivative f''(x) and not any higher order.

Piecewise cubic interpolation

In this approach, each $s_k(x)$ is a *cubic* polynomial, designed such that it interpolates the four data points:

$$(x_{k-1}, y_{k-1}), (x_k, y_k), (x_{k+1}, y_{k+1}), (x_{k+2}, y_{k+2})$$

As we will see, the benefit is that the error can be made even smaller than with piecewise linear curves; the drawback is that s(x) can develop "kinks" (or corners) where two pieces s_k and s_{k+1} are joined.

Error of piecewise cubics:

$$f(x) - s_k(x) = \frac{f''''(\theta_k)}{4!} \underbrace{(x - x_{k-1})(x - x_k)(x - x_{k+1})(x - x_{k+2})}_{q(x)}$$

An analysis similar to the linear case can show that

$$|q(x)| \le \frac{9}{16} \max\{h_{k-1}, h_k, h_{k+1}\}^4$$

If we again assume that $h_1 = h_2 = \ldots = h_{n-1} = h$, the error bound becomes:

$$|f(x) - s(x)| \le \frac{1}{24} ||f''''||_{\infty} \frac{9}{16} h^4$$

 $\Rightarrow |f(x) - s(x)| \le \frac{9}{384} ||f''''||_{\infty} h^4$

The next possibility we shall consider, is a piecewise cubic curve

$$s(x) = \begin{cases} s_1(x), x \in I_1 \\ s_2(x), x \in I_2 \\ \vdots \\ s_{n-1}(x), x \in I_{n-1} \end{cases}$$

where each $s_k(x) = a_3^{(k)}x^3 + a_2^{(k)}x^2 + a_1^{(k)}x + a_0^{(k)}$ and the coefficients $a_i^{(j)}$ are chosen as to *force* that the curve has continuous values, first and second derivatives:

$$s_k(x_{k+1}) = s_{k+1}(x_{k+1})$$

 $s'_k(x_{k+1}) = s'_{k+1}(x_{k+1})$
 $s''_k(x_{k+1}) = s''_{k+1}(x_{k+1})$

The curve constructed this way is called a *cubic spline* interpolant.