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Although using Chebyshev points mitigates some of the drawbacks of high-
order polynomial interpolants, this is still a non-ideal solution, since:

• We do not always have the flexibility to pick the xi’s.

• Polynomial interpolants of high degree typically require more than O(n)
computational cost to construct.

• Local changes in the data points affect the entire extent of the interpolant.

Piecewise Polynomials

A better remedy is to use piecewise polynomials. Assume that the x-values
{xi}ni=1 are sorted in ascending order:

a = x1 < x2 < . . . < xn = b

Define Ik = [xk, xk+1] and hk = |xk+1 − xk|. We also define the polynomials
s1(x), s2(x), . . . , sn−1(x) and use each of them to define the interpolant s(x) at
the respective interval Ik:

s(x) =


s1(x), x ∈ I1
s2(x), x ∈ I2

...
sn−1(x), x ∈ In−1

The benefit of using piecewise polynomial interpolants is that each sk(x) can
be relatively low order and thus, non-oscillatory and easier to compute. The
simplest piecewise polynomial interpolant is a piecewise linear curve:
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x1 x2 x3 x4

s1(x)

s2(x)
s3(x)

the “real” f(x)

In this case, every sk can be written out explicitly as:

sk(x) = yk +
yk+1 − yk
xk+1 − xk

(x− xk)

The next step is to examine the error e(x) = f(x) − sk(x) in the interval Ik.
From the theorem we presented in the last lecture, we have that, for any x ∈ Ik
there is a θk = θ(xk) ∈ Ik such that:

e(x) = f(x)− sk(x) =
f ′′(θ)

2
(x− xk)(x− xk+1)︸ ︷︷ ︸

q(x)

(1)

We are interested in the maximum value of |q(x)| in order to determine a bound
for the error. q(x) is a quadratic function which crosses zero at xk and xk+1,
thus the extreme value is obtained at the midpoint xm = (xk + xk+1)/2. Thus,

|q(x)| ≤ |q(xm)| =
(
xk+1 − xk

2

)2

=
h2k
4

for all x ∈ Ik. Using equation (1) gives:

|f(x)− sk(x)| ≤ max
x∈Ik

∣∣∣∣f ′′(x)

2

∣∣∣∣ ·max
x∈Ik
|(x− xk)(x− xk+1)|

= max
x∈Ik

∣∣∣∣f ′′(x)

2

∣∣∣∣ · h2k4
⇒ |f(x)− sk(x)| ≤ 1

8
max
x∈Ik
|f ′′(x)| · h2k

for all x ∈ Ik.
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Additionally, if we assume all data points are equally spaced, i.e.,

h1 = h2 = . . . = hn−1 = h =

(
b− a
n− 1

)
we can additionally write:

|f(x)− s(x)| ≤ 1

8
max
x∈[a,b]

|f ′′(x)| · h2

We often express the quantity on the right hand side using the “infinity norm”
of a given function, defined as

||f ||∞ = max
x∈[a,b]

|f(x)|

Thus, using this notation:

|f(x)− s(x)| ≤ 1

8
||f ′′||∞ · h2

Note that

• As h → 0, the maximum discrepancy between f and s vanishes (propor-
tionally to h2)

• As we introduce more points, the quality of the approximation increases
consistently, since the criterion above only considers the second derivative
f ′′(x) and not any higher order.

Piecewise cubic interpolation

In this approach, each sk(x) is a cubic polynomial, designed such that it inter-
polates the four data points:

(xk−1, yk−1), (xk, yk), (xk+1, yk+1), (xk+2, yk+2)

As we will see, the benefit is that the error can be made even smaller than
with piecewise linear curves; the drawback is that s(x) can develop “kinks” (or
corners) where two pieces sk and sk+1 are joined.

Error of piecewise cubics:

f(x)− sk(x) =
f ′′′′(θk)

4!
(x− xk−1)(x− xk)(x− xk+1)(x− xk+2)︸ ︷︷ ︸

q(x)

An analysis similar to the linear case can show that

|q(x)| ≤ 9

16
max{hk−1, hk, hk+1}4
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If we again assume that h1 = h2 = . . . = hn−1 = h, the error bound becomes:

|f(x)− s(x)| ≤ 1

24
||f ′′′′||∞

9

16
h4

⇒ |f(x)− s(x)| ≤ 9

384
||f ′′′′||∞h4

The next possibility we shall consider, is a piecewise cubic curve

s(x) =


s1(x), x ∈ I1
s2(x), x ∈ I2

...
sn−1(x), x ∈ In−1

where each sk(x) = a
(k)
3 x3 + a

(k)
2 x2 + a

(k)
1 x + a

(k)
0 and the coefficients a

(j)
i

are chosen as to force that the curve has continuous values, first and second
derivatives:

sk(xk+1) = sk+1(xk+1)

s′k(xk+1) = s′k+1(xk+1)

s′′k(xk+1) = s′′k+1(xk+1)

The curve constructed this way is called a cubic spline interpolant.
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