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Although using Chebyshev points mitigates some of the drawbacks of high-
order polynomial interpolants, this is still a non-ideal solution, since:

e We do not always have the flexibility to pick the z;’s.

e Polynomial interpolants of high degree typically require more than O(n)
computational cost to construct.

e Local changes in the data points affect the entire extent of the interpolant.

Piecewise Polynomials

A better remedy is to use piecewise polynomials. Assume that the z-values
{z;}1_, are sorted in ascending order:

a=xr1 <2< ...<xp=0>

Define I, = [z, zk+1] and hy = |xgr1 — zx|. We also define the polynomials
s1(x), s2(x), ..., Sn—1(z) and use each of them to define the interpolant s(x) at
the respective interval I:

si(x),x €
so(x),x € Iy

s(z) =
5n—1($)7x € In—l

The benefit of using piecewise polynomial interpolants is that each si(z) can
be relatively low order and thus, non-oscillatory and easier to compute. The
simplest piecewise polynomial interpolant is a piecewise linear curve:



x T2 €3 T4

In this case, every s, can be written out explicitly as:

Yk+1 — Yk (

T — T)
Tk+1 — Tk

sk(T) = yx +
The next step is to examine the error e(z) = f(x) — si(z) in the interval Ij.
From the theorem we presented in the last lecture, we have that, for any = € I
there is a 0 = 0(xx) € I such that:

1)

e(w) = f(z) = su(e) =

(= zp) (€ — Tpp1) (1)

a(z)

We are interested in the maximum value of |¢(x)| in order to determine a bound
for the error. ¢(z) is a quadratic function which crosses zero at x and xpiq,
thus the extreme value is obtained at the midpoint z,, = (xx + zx+1)/2. Thus,

Tl — Tk 2 h2
(o) < laton)| = () =%

for all z € Ij,. Using equation (1) gives:

7@ @) < max| 0D max |z~ 2o~ i)
B f”(x) h2
= max| ol
= [f@) —s@)] < gmax|f @) n?

for all x € Ij.



Additionally, if we assume all data points are equally spaced, i.e.,

b_
h1:h2:...:hn1:h:( “)

n—1

we can additionally write:

(o) = s(o)] < s | (o) - B2

We often express the quantity on the right hand side using the “infinity norm”
of a given function, defined as

flle = max |£(z)

Thus, using this notation:

Note that

e As h — 0, the maximum discrepancy between f and s vanishes (propor-
tionally to h?)

e As we introduce more points, the quality of the approximation increases
consistently, since the criterion above only considers the second derivative
f”(x) and not any higher order.

Piecewise cubic interpolation

In this approach, each si(x) is a cubic polynomial, designed such that it inter-
polates the four data points:

(Th—1,Yk—1)s (Th> Yk )5 (Tht1s Yrt1)s (Thor2s Yrr2)

As we will see, the benefit is that the error can be made even smaller than
with piecewise linear curves; the drawback is that s(z) can develop “kinks” (or
corners) where two pieces si and sgy1 are joined.

Error of piecewise cubics:

fll// (ak)

f(@) = sp(z) = TR (= 1) (@ — 2 ) (= T2 ) (T — Tpey2)

q(z)

An analysis similar to the linear case can show that

9
lg(x)] < T max{hg_1, b, b1 }?



If we again assume that h1 = ho = ... = h,_1 = h, the error bound becomes:

1 "t 9
[f@) = s@)] < Sl Neogeh

9
= [f@) = s@)] < 1" leoh?

The next possibility we shall consider, is a piecewise cubic curve

si(z),x €y
so(x),x € Iy

s(x) =
sp—1(x),x € I

where each sp(x) = aék)xg + aék)xz + agk)x + a(()k) and the coefficients al(-j)
are chosen as to force that the curve has continuous values, first and second

derivatives:

Sk($k+1) = 8k+1(33k+1)
52($k+1) = S;c+l($k+1)
sp(@rt1) = spp(Trgr)

The curve constructed this way is called a cubic spline interpolant.



