CS412: Lecture \#10

Mridul Aanjaneya

February 19, 2015

Newton Interpolation

The Newton basis functions can be derived by considering the problem of building a polynomial interpolant incrementally as successive new data points are added. Here is the basic idea:

- Step 0: Define a degree-0 polynomial $\mathcal{P}_{0}(x)$ that just interpolates $\left(x_{0}, y_{0}\right)$. Obviously, we can achieve that by simply selecting

$$
\mathcal{P}_{0}(x)=y_{0}
$$

- Step 1: Define a degree-1 polynomial $\mathcal{P}_{1}(x)$ that now interpolates both $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$. We also want to take advantage of the previously defined $\mathcal{P}_{0}(x)$ by constructing \mathcal{P}_{1} as

$$
\mathcal{P}_{1}(x)=\mathcal{P}_{0}(x)+\mathcal{M}_{1}(x)
$$

where $\mathcal{M}_{1}(x)$ is a degree- 1 polynomial and it needs to satisfy

$$
\underbrace{\mathcal{P}_{1}\left(x_{0}\right)}_{=y_{0}}=\underbrace{\mathcal{P}_{0}\left(x_{0}\right)}_{=y_{0}}+\mathcal{M}_{1}\left(x_{0}\right) \Rightarrow \mathcal{M}_{1}\left(x_{0}\right)=0
$$

Thus, $\mathcal{M}_{1}(x)=c_{1}\left(x-x_{0}\right)$. We can determine c_{1} using:
$\mathcal{P}_{1}\left(x_{1}\right)=\mathcal{P}_{0}\left(x_{1}\right)+c_{1}\left(x_{1}-x_{0}\right) \Rightarrow c_{1}=\frac{\mathcal{P}_{1}\left(x_{1}\right)-\mathcal{P}_{0}\left(x_{1}\right)}{x_{1}-x_{0}}=\frac{y_{1}-\mathcal{P}_{0}\left(x_{1}\right)}{x_{1}-x_{0}}$

- Step 2: Now construct $\mathcal{P}_{2}(x)$ which interpolates the three points $\left(x_{0}, y_{0}\right)$, $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$. Define it as:

$$
\mathcal{P}_{2}(x)=\mathcal{P}_{1}(x)+\mathcal{M}_{2}(x)
$$

where $\mathcal{M}_{2}(x)$ is a degree- 2 polynomial. Once again we observe that

$$
\left.\begin{array}{l}
\underbrace{\mathcal{P}_{2}\left(x_{0}\right)}_{=y_{0}}=\underbrace{\mathcal{P}_{1}\left(x_{0}\right)}_{=y_{0}}+\mathcal{M}_{2}\left(x_{0}\right) \\
\underbrace{\mathcal{P}_{2}\left(x_{1}\right)}_{=y_{1}}=\underbrace{\mathcal{P}_{1}\left(x_{1}\right)}_{=y_{1}}+\mathcal{M}_{2}\left(x_{1}\right)
\end{array}\right\} \Rightarrow \mathcal{M}_{2}\left(x_{0}\right)=\mathcal{M}_{2}\left(x_{1}\right)=0
$$

Thus, $\mathcal{M}_{2}(x)$ must have the form:

$$
\mathcal{M}_{2}(x)=c_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)
$$

Substituting $x \leftarrow x_{2}$, we get an expression for c_{2}

$$
\begin{aligned}
y_{2}=\mathcal{P}_{2}\left(x_{2}\right) & =\mathcal{P}_{1}\left(x_{2}\right)+c_{2}\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right) \\
& \Rightarrow c_{2}=\frac{y_{2}-\mathcal{P}_{1}\left(x_{2}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}
\end{aligned}
$$

- Step k: In the previous step, we constructed a degree- $(k-1)$ polynomial that interpolates $\left(x_{0}, y_{0}\right), \ldots,\left(x_{k-1}, y_{k-1}\right)$. We will use this $\mathcal{P}_{k-1}(x)$ and now define a degree- k polynomial $\mathcal{P}_{k}(x)$ such that all of $\left(x_{0}, y_{0}\right), \ldots,\left(x_{k}, y_{k}\right)$ are interpolated. Again,

$$
\mathcal{P}_{k}(x)=\mathcal{P}_{k-1}(x)+\mathcal{M}_{k}(x)
$$

where $\mathcal{M}_{k}(x)$ is a degree- k polynomial.
Now we have for any $i \in\{0,1, \ldots, k-1\}$

$$
\underbrace{\mathcal{P}_{k}\left(x_{i}\right)}_{=y_{i}}=\underbrace{\mathcal{P}_{k-1}\left(x_{i}\right)}_{=y_{i}}+\mathcal{M}_{k}\left(x_{i}\right) \Rightarrow \mathcal{M}_{k}\left(x_{i}\right)=0
$$

Thus, the degree- k polynomial \mathcal{M}_{k} must have the form

$$
\mathcal{M}_{k}(x)=c_{k}\left(x-x_{0}\right) \ldots\left(x-x_{k-1}\right)
$$

Substituting $x \leftarrow x_{k}$ gives

$$
\begin{aligned}
y_{k} & =\mathcal{P}_{k}\left(x_{k}\right)=\mathcal{P}_{k-1}\left(x_{k}\right)+c_{k}\left(x_{k}-x_{0}\right) \ldots\left(x_{k}-x_{k-1}\right) \\
\Rightarrow c_{k} & =\frac{y_{k}-\mathcal{P}_{k-1}\left(x_{k}\right)}{\prod_{j=0}^{k-1}\left(x_{k}-x_{j}\right)}
\end{aligned}
$$

Every polynomial $\mathcal{M}_{i}(x)$ in this process is written as

$$
\mathcal{M}_{i}(x)=c_{i} \mathcal{N}_{i}(x) \quad \text { where } \quad \mathcal{N}_{i}(x)=\prod_{j=0}^{i-1}\left(x-x_{j}\right)
$$

After n steps, the interpolating polynomial $\mathcal{P}_{n}(x)$ is then written as:

$$
\mathcal{P}_{n}(x)=c_{0} \mathcal{N}_{0}(x)+c_{1} \mathcal{N}_{1}(x)+\ldots+c_{n} \mathcal{N}_{n}(x)
$$

where

$$
\begin{aligned}
\mathcal{N}_{0}(x) & =1 \\
\mathcal{N}_{1}(x) & =x-x_{0} \\
\mathcal{N}_{2}(x) & =\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& \vdots \\
\mathcal{N}_{k}(x) & =\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{k-1}\right)
\end{aligned}
$$

These are the Newton polynomials (compare with the Lagrange polynomials $\left.l_{i}(x)\right)$. Note that the x_{i} 's are called the centers.

We illustrate the incremental Newton interpolation by building the Newton interpolant incrementally as the new data points are added. We begin with the first data point $\left(x_{0}, y_{0}\right)=(-2,-27)$, which is interpolated by the constant polynomial

$$
\mathcal{P}_{0}(x)=y_{0}=-27
$$

Incorporating the second data point $\left(x_{1}, y_{1}\right)=(0,-1)$, we modify the previous polynomial so that it interpolates the new data point as well:

$$
\begin{aligned}
\mathcal{P}_{1}(x) & =\mathcal{P}_{0}(x)+\mathcal{M}_{1}(x)=\mathcal{P}_{0}(x)+c_{1}\left(x-x_{0}\right) \\
& =\mathcal{P}_{0}(x)+\frac{y_{1}-\mathcal{P}_{0}(x)}{x_{1}-x_{0}}\left(x-x_{0}\right) \\
& =-27+\frac{-1-(-27)}{0-(-2)}(x-(-2)) \\
& =-27+13(x+2)
\end{aligned}
$$

Finally, we incorporate the third data point $\left(x_{2}, y_{2}\right)=(1,0)$, modifying the previous polynomial so that it interpolates the new data point as well:

$$
\begin{aligned}
\mathcal{P}_{2}(x) & =\mathcal{P}_{1}(x)+\mathcal{M}_{2}(x)=\mathcal{P}_{1}(x)+c_{2}\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& =\mathcal{P}_{1}(x)+\frac{y_{2}-\mathcal{P}_{1}\left(x_{2}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& =-27+13(x+2)+\frac{0-12}{(1-(-2))(1-0)}(x-(-2))(x-0) \\
& =-27+13(x+2)-4(x+2) x
\end{aligned}
$$

So far, we saw two ways of computing the Newton interpolant, triangular matrix and incremental interpolation. There is, however, another efficient and systematic way to compute them, called divided differences. A divided difference is a function defined over a set of sequentially indexed centers, e.g.,

$$
x_{i}, x_{i+1}, \ldots, x_{i+j-1}, x_{i+j}
$$

The divided difference of these values is denoted by:

$$
f\left[x_{i}, x_{i+1}, \ldots, x_{i+j-1}, x_{i+j}\right]
$$

The value of this symbol is defined recursively as follows. For divided differences with one argument,

$$
f\left[x_{i}\right] \equiv f\left(x_{i}\right)=y_{i}
$$

With two arguments:

$$
f\left[x_{i}, x_{i+1}\right]=\frac{f\left[x_{i+1}\right]-f\left[x_{i}\right]}{x_{i+1}-x_{i}}
$$

With three:

$$
f\left[x_{i}, x_{i+1}, x_{i+2}\right]=\frac{f\left[x_{i+1}, x_{i+2}\right]-f\left[x_{i}, x_{i+1}\right]}{x_{i+2}-x_{i}}
$$

With $j+1$ arguments:

$$
f\left[x_{i}, x_{i+1}, \ldots, x_{i+j-1}, x_{i+j}\right]=\frac{f\left[x_{i+1}, \ldots, x_{i+j}\right]-f\left[x_{i}, \ldots, x_{i+j-1}\right]}{x_{i+j}-x_{i}}
$$

The fact that makes divided differences so useful is that $f\left[x_{i}, \ldots, x_{i+j}\right]$ can be shown to be the coefficient of the highest power of x in a polynomial that interpolates through

$$
\left(x_{i}, y_{i}\right),\left(x_{i+1}, y_{i+1}\right), \ldots,\left(x_{i+j-1}, y_{i+j-1}\right),\left(x_{i+j}, y_{i+j}\right)
$$

Why is this so useful?

Remember, the polynomial that interpolates

$$
\left(x_{0}, y_{0}\right), \ldots,\left(x_{k}, y_{k}\right)
$$

is

$$
\mathcal{P}_{k}(x)=\underbrace{\mathcal{P}_{k-1}(x)}_{\text {highest power }=x^{k-1}}+\underbrace{c_{k}\left(x-x_{0}\right) \ldots\left(x-x_{k-1}\right)}_{=c_{k} x^{k}+\text { lower powers }}
$$

Thus, $c_{k}=f\left[x_{0}, x_{1}, x_{2}, \ldots, x_{k}\right]!$ Or, in other words,

$$
\begin{aligned}
\mathcal{P}_{n}(x) & =f\left[x_{0}\right] \\
& +f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right) \\
& +f\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& \vdots \\
& +f\left[x_{0}, x_{1}, \ldots, x_{n}\right]\left(x-x_{0}\right) \ldots\left(x-x_{n-1}\right)
\end{aligned}
$$

So, if we can quickly evaluate the divided differences, we have determined $\mathcal{P}_{n}(x)$! Let us see a specific example:

$$
\begin{array}{r}
\left(x_{0}, y_{0}\right)=(-2,-27) \\
\left(x_{1}, y_{1}\right)=(0,-1) \\
\left(x_{2}, y_{2}\right)=(1,0) \\
f\left[x_{0}\right]=y_{0}=-27 \\
f\left[x_{1}\right]=y_{1}=-1 \\
f\left[x_{2}\right]=y_{2}=-0 \\
f\left[x_{0}, x_{1}\right]=\frac{f\left[x_{1}\right]-f\left[x_{0}\right]}{x_{1}-x_{0}}=\frac{-1-(-27)}{0-(-2)}=13 \\
f\left[x_{1}, x_{2}\right]=\frac{f\left[x_{2}\right]-f\left[x_{1}\right]}{x_{2}-x_{1}}=\frac{0-(-1)}{1-0}=1 \\
f\left[x_{0}, x_{1}, x_{2}\right]=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}=\frac{1-13}{1-(-2)}=-4
\end{array}
$$

Thus,

$$
\begin{aligned}
\mathcal{P}_{2}(x) & =f\left[x_{0}\right]+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+f\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& =-27+13(x+2)-4(x+2) x
\end{aligned}
$$

Divided differences are usually tabulated as follows:

	$f[\cdot]$	$f[\cdot, \cdot]$	$f[\cdot, \cdot, \cdot]$	\ldots
x_{0}	$f\left[x_{0}\right]$			
x_{1}	$f\left[x_{1}\right]$	$f\left[x_{0}, x_{1}\right]$		
x_{2}	$f\left[x_{2}\right]$	$f\left[x_{1}, x_{2}\right]$	$f\left[x_{0}, x_{1}, x_{2}\right]$	
x_{3}	$f\left[x_{3}\right]$	$f\left[x_{2}, x_{3}\right]$	$f\left[x_{1}, x_{2}, x_{3}\right]$	\ldots
x_{4}	$f\left[x_{4}\right]$	$f\left[x_{3}, x_{4}\right]$	$f\left[x_{2}, x_{3}, x_{4}\right]$	\ldots

The recursive definition can be implemented directly on the table as follows:

$$
Y=\frac{a-b}{c-d}
$$

For example, for the sample set $\left(x_{0}, y_{0}\right)=(-2,-27),\left(x_{1}, y_{1}\right)=(0,-1)$, $\left(x_{2}, y_{2}\right)=(1,0)$,

$x_{i}{ }^{\prime} \mathrm{s}$	$y_{i}{ }^{\prime} \mathrm{s}$			
-2	-27			
0	-1	13		
1	0	1	-4	

Easy evaluation

$$
\begin{aligned}
& \mathcal{P}_{4}(x)=c_{0} \\
&+c_{1}\left(x-x_{0}\right) \\
&+c_{2}\left(x-x_{0}\right)\left(x-x_{1}\right) \\
&+c_{3}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \\
&+c_{4}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \\
&=\underbrace{\underbrace{\mathcal{Q}_{0}}_{\mathcal{Q}_{1}(x)}\left(x-x_{0}\right)[c_{1}+\left(x-x_{1}\right)[c_{2}+\left(x-x_{2}\right)[c_{3}+\left(x-x_{3}\right) \underbrace{c_{4}}_{\mathcal{Q}_{2}(x)}]]]}_{\mathcal{Q}_{0}(x)} \\
& \underbrace{}_{\mathcal{P}_{4}(x)=\mathcal{Q}_{0}(x)}
\end{aligned}
$$

Recursively: Define $\mathcal{Q}_{n}(x)=c_{n}$. Then

$$
\mathcal{Q}_{n-1}(x)=c_{n-1}+\left(x-x_{n-1}\right) \mathcal{Q}_{n}(x)
$$

The value of $\mathcal{P}_{n}(x)=\mathcal{Q}_{0}(x)$ can be evaluated (in linear time) by iterating this recurrence n times. We also have

$$
\begin{aligned}
\mathcal{Q}_{n-1}(x) & =c_{n-1}+\left(x-x_{n-1}\right) \mathcal{Q}_{n}(x) \\
\Rightarrow \mathcal{Q}_{n-1}^{\prime}(x) & =\mathcal{Q}_{n}(x)+\left(x-x_{n-1}\right) \mathcal{Q}_{n}^{\prime}(x)
\end{aligned}
$$

Thus, once we have computed all the $\mathcal{Q}_{k}^{\prime} \mathrm{s}$, we can also compute all the derivatives too! Ultimately, $\mathcal{P}_{n}^{\prime}(x)=\mathcal{Q}_{0}^{\prime}(x)$.

Let us evaluate Newton's method, as we did with other methods:

- Cost of computing $\mathcal{P}_{n}(x): O\left(n^{2}\right)$.
- Cost of evaluating $\mathcal{P}_{n}(x)$ for an arbitrary $x: O(n)$.

This can be accelerated (similar to Horner's method) using the recursive scheme defined above.

- Availability of derivatives: yes, as discussed above.
- Allows for incremental interpolation: yes!

