
CS412: Lecture #10

Mridul Aanjaneya

February 19, 2015

Newton Interpolation

The Newton basis functions can be derived by considering the problem of build-
ing a polynomial interpolant incrementally as successive new data points are
added. Here is the basic idea:

• Step 0: Define a degree-0 polynomial P0(x) that just interpolates (x0, y0).
Obviously, we can achieve that by simply selecting

P0(x) = y0

• Step 1: Define a degree-1 polynomial P1(x) that now interpolates both
(x0, y0) and (x1, y1). We also want to take advantage of the previously
defined P0(x) by constructing P1 as

P1(x) = P0(x) +M1(x)

where M1(x) is a degree-1 polynomial and it needs to satisfy

P1(x0)︸ ︷︷ ︸
=y0

= P0(x0)︸ ︷︷ ︸
=y0

+M1(x0)⇒M1(x0) = 0

Thus, M1(x) = c1(x− x0). We can determine c1 using:

P1(x1) = P0(x1) + c1(x1 − x0)⇒ c1 =
P1(x1)− P0(x1)

x1 − x0
=

y1 − P0(x1)

x1 − x0

• Step 2: Now construct P2(x) which interpolates the three points (x0, y0),
(x1, y1), (x2, y2). Define it as:

P2(x) = P1(x) +M2(x)

where M2(x) is a degree-2 polynomial. Once again we observe that

P2(x0)︸ ︷︷ ︸
=y0

= P1(x0)︸ ︷︷ ︸
=y0

+ M2(x0)

P2(x1)︸ ︷︷ ︸
=y1

= P1(x1)︸ ︷︷ ︸
=y1

+ M2(x1)

⇒M2(x0) =M2(x1) = 0

1



Thus, M2(x) must have the form:

M2(x) = c2(x− x0)(x− x1)

Substituting x← x2, we get an expression for c2

y2 = P2(x2) = P1(x2) + c2(x2 − x0)(x2 − x1)

⇒ c2 =
y2 − P1(x2)

(x2 − x0)(x2 − x1)

• Step k: In the previous step, we constructed a degree-(k− 1) polynomial
that interpolates (x0, y0), . . . , (xk−1, yk−1). We will use this Pk−1(x) and
now define a degree-k polynomial Pk(x) such that all of (x0, y0), . . . , (xk, yk)
are interpolated. Again,

Pk(x) = Pk−1(x) +Mk(x)

where Mk(x) is a degree-k polynomial.

Now we have for any i ∈ {0, 1, . . . , k − 1}

Pk(xi)︸ ︷︷ ︸
=yi

= Pk−1(xi)︸ ︷︷ ︸
=yi

+Mk(xi)⇒Mk(xi) = 0

Thus, the degree-k polynomial Mk must have the form

Mk(x) = ck(x− x0) . . . (x− xk−1)

Substituting x← xk gives

yk = Pk(xk) = Pk−1(xk) + ck(xk − x0) . . . (xk − xk−1)

⇒ ck =
yk − Pk−1(xk)∏k−1

j=0 (xk − xj)

Every polynomial Mi(x) in this process is written as

Mi(x) = ciNi(x) where Ni(x) =
i−1∏
j=0

(x− xj)

After n steps, the interpolating polynomial Pn(x) is then written as:

Pn(x) = c0N0(x) + c1N1(x) + . . . + cnNn(x)

where

N0(x) = 1

N1(x) = x− x0

N2(x) = (x− x0)(x− x1)

...

Nk(x) = (x− x0)(x− x1) . . . (x− xk−1)

2



These are the Newton polynomials (compare with the Lagrange polynomials
li(x)). Note that the xi’s are called the centers.

We illustrate the incremental Newton interpolation by building the Newton
interpolant incrementally as the new data points are added. We begin with
the first data point (x0, y0) = (−2,−27), which is interpolated by the constant
polynomial

P0(x) = y0 = −27

Incorporating the second data point (x1, y1) = (0,−1), we modify the previous
polynomial so that it interpolates the new data point as well:

P1(x) = P0(x) +M1(x) = P0(x) + c1(x− x0)

= P0(x) +
y1 − P0(x)

x1 − x0
(x− x0)

= −27 +
−1− (−27)

0− (−2)
(x− (−2))

= −27 + 13(x + 2)

Finally, we incorporate the third data point (x2, y2) = (1, 0), modifying the
previous polynomial so that it interpolates the new data point as well:

P2(x) = P1(x) +M2(x) = P1(x) + c2(x− x0)(x− x1)

= P1(x) +
y2 − P1(x2)

(x2 − x0)(x2 − x1)
(x− x0)(x− x1)

= −27 + 13(x + 2) +
0− 12

(1− (−2))(1− 0)
(x− (−2))(x− 0)

= −27 + 13(x + 2)− 4(x + 2)x

So far, we saw two ways of computing the Newton interpolant, triangular
matrix and incremental interpolation. There is, however, another efficient and
systematic way to compute them, called divided differences. A divided difference
is a function defined over a set of sequentially indexed centers, e.g.,

xi, xi+1, . . . , xi+j−1, xi+j

The divided difference of these values is denoted by:

f [xi, xi+1, . . . , xi+j−1, xi+j ]

The value of this symbol is defined recursively as follows. For divided differences
with one argument,

f [xi] ≡ f(xi) = yi

With two arguments:

f [xi, xi+1] =
f [xi+1]− f [xi]

xi+1 − xi

3



With three:

f [xi, xi+1, xi+2] =
f [xi+1, xi+2]− f [xi, xi+1]

xi+2 − xi

With j + 1 arguments:

f [xi, xi+1, . . . , xi+j−1, xi+j ] =
f [xi+1, . . . , xi+j ]− f [xi, . . . , xi+j−1]

xi+j − xi

The fact that makes divided differences so useful is that f [xi, . . . , xi+j ] can
be shown to be the coefficient of the highest power of x in a polynomial that
interpolates through

(xi, yi), (xi+1, yi+1), . . . , (xi+j−1, yi+j−1), (xi+j , yi+j)

Why is this so useful?

Remember, the polynomial that interpolates

(x0, y0), . . . , (xk, yk)

is

Pk(x) = Pk−1(x)︸ ︷︷ ︸
highest power=xk−1

+ ck(x− x0) . . . (x− xk−1)︸ ︷︷ ︸
=ckxk+lower powers

Thus, ck = f [x0, x1, x2, . . . , xk]! Or, in other words,

Pn(x) = f [x0]

+ f [x0, x1](x− x0)

+ f [x0, x1, x2](x− x0)(x− x1)

...

+ f [x0, x1, . . . , xn](x− x0) . . . (x− xn−1)

4



So, if we can quickly evaluate the divided differences, we have determined Pn(x)!
Let us see a specific example:

(x0, y0) = (−2,−27)

(x1, y1) = (0,−1)

(x2, y2) = (1, 0)

f [x0] = y0 = −27

f [x1] = y1 = −1

f [x2] = y2 = −0

f [x0, x1] =
f [x1]− f [x0]

x1 − x0
=
−1− (−27)

0− (−2)
= 13

f [x1, x2] =
f [x2]− f [x1]

x2 − x1
=

0− (−1)

1− 0
= 1

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
=

1− 13

1− (−2)
= −4

Thus,

P2(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1)

= −27 + 13(x + 2)− 4(x + 2)x

5



Divided differences are usually tabulated as follows:

f [·] f [·, ·] f [·, ·, ·] . . .
x0 f [x0]
x1 f [x1] f [x0, x1]
x2 f [x2] f [x1, x2] f [x0, x1, x2]
x3 f [x3] f [x2, x3] f [x1, x2, x3] . . .
x4 f [x4] f [x3, x4] f [x2, x3, x4] . . .

The recursive definition can be implemented directly on the table as follows:

a

b

Yc

d

xi’s yi’s

Y =
a− b

c− d

6



For example, for the sample set (x0, y0) = (−2,−27), (x1, y1) = (0,−1),
(x2, y2) = (1, 0),

xi’s yi’s
−2 −27
0 −1 13
1 0 1 −4

Easy evaluation

P4(x) = c0

+ c1(x− x0)

+ c2(x− x0)(x− x1)

+ c3(x− x0)(x− x1)(x− x2)

+ c4(x− x0)(x− x1)(x− x2)(x− x3)

= c0 + (x− x0)[c1 + (x− x1)[c2 + (x− x2)[c3 + (x− x3) c4︸︷︷︸
Q4(x)︸ ︷︷ ︸

Q3(x)

]

︸ ︷︷ ︸
Q2(x)

]

︸ ︷︷ ︸
Q1(x)

]

︸ ︷︷ ︸
Q0(x)

P4(x) = Q0(x)

Recursively: Define Qn(x) = cn. Then

Qn−1(x) = cn−1 + (x− xn−1)Qn(x)

The value of Pn(x) = Q0(x) can be evaluated (in linear time) by iterating this
recurrence n times. We also have

Qn−1(x) = cn−1 + (x− xn−1)Qn(x)

⇒ Q′n−1(x) = Qn(x) + (x− xn−1)Q′n(x)

Thus, once we have computed all the Q′ks, we can also compute all the deriva-
tives too! Ultimately, P ′n(x) = Q′0(x).

7



Let us evaluate Newton’s method, as we did with other methods:

• Cost of computing Pn(x): O(n2).

• Cost of evaluating Pn(x) for an arbitrary x: O(n).

This can be accelerated (similar to Horner’s method) using the recursive
scheme defined above.

• Availability of derivatives: yes, as discussed above.

• Allows for incremental interpolation: yes!

8


