CS412: Homework \#3

Due: Tuesday, March 24th, 2015 (by 11:59PM)

Sum of all problems: 120%, Maximum possible score: 100%.

1. [40\%] Prove the following properties:
(a) Show that for any vector $x \in \mathbb{R}^{n}$, the following inequalities hold:

$$
\begin{array}{r}
\|x\|_{\infty} \leq\|x\|_{1} \leq n\|x\|_{\infty} \\
\|x\|_{\infty} \leq\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty}
\end{array}
$$

(b) Assume that positive constants c_{1}, c_{2} exist, such that for any $x \in \mathbb{R}^{n}$

$$
c_{1}\|x\|_{a} \leq\|x\|_{b} \leq c_{2}\|x\|_{a}
$$

Here, $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ are simply two different vector norms. Show that in this case, we can also find positive constants d_{1}, d_{2} such that

$$
d_{1}\|M\|_{a} \leq\|M\|_{b} \leq d_{2}\|M\|_{a}
$$

for any matrix $M \in \mathbb{R}^{n \times n}$. The norms in the last expression are the matrix norms induced from the respective vector norms.
2. [20\%] Let

$$
A=\left[\begin{array}{cc}
1 & 1+\varepsilon \\
1-\varepsilon & 1
\end{array}\right]
$$

(a) What is the determinant of A ?
(b) In single-precision arithmetic, for what range of values of ε will the computed value of the determinant be zero?
(c) What is the $L U$ factorization of A ?
(d) In single-precision arithmetic, for what range of values of ε will the computed value of U be singular?
3. [20\%] Prove the following, where A, U, V are $n \times n$ matrices and u, v are $n \times 1$ vectors:
(a) The Sherman-Morrison formula:

$$
\left(A-u v^{T}\right)^{-1}=A^{-1}+A^{-1} u\left(1-v^{T} A^{-1} u\right)^{-1} v^{T} A^{-1}
$$

Hint: Multiply both sides by $\left(A-u v^{T}\right)$.
(b) The Woodbury formula:

$$
\left(A-U V^{T}\right)^{-1}=A^{-1}+A^{-1} U\left(I-V^{T} A^{-1} U\right)^{-1} V^{T} A^{-1}
$$

Hint: Multiply both sides by $\left(A-U V^{T}\right)$.
4. [40\%] Prove the following two statements:
(a) The product of two lower triangular matrices is lower triangular.
(b) The inverse of a nonsingular lower triangular matrix is lower triangular.

