
CS412 Spring Semester 2011

Practice Final - Solutions

1. MULTIPLE CHOICE SECTION. Circle or underline the correct answer
(or answers). You do not need to provide a justification for your answer(s).

(1) Which of the following statements, regarding methods for solving a
nonlinear equation f(x) = 0, are true?
(Circle or underline ALL correct answers)

(a) Newton’s method is second order accurate, but requires knowledge

of the derivative f ′(x).

(b) The Secant method is second order accurate, and doesn’t require
knowledge of the derivative f ′(x).

(c) The Bisection method offers superlinear convergence as long as
f ′(α) 6= 0 at the exact solution x = α.

(2) Which of the following statements, regarding methods for solving a
nonlinear equation f(x) = 0, are true?
(Circle or underline ALL correct answers)

(a) The Bisection method has linear convergence, and will safely

converge to the solution, starting from an interval [a, b], as long

as f(a)f(b) < 0 and f is continuous.

(b) Newton’s method offers quadratic convergence, but is not

guaranteed to always converge, especially if started from a value

far from the solution.

(c) The Secant method has superlinear (although not quadratic) con-
vergence, but is always guaranteed to converge to a solution.

(3) Which of the following are good reasons for using Lagrange interpo-
lation?
(Circle or underline ALL correct answers)

(a) We can easily compute derivatives of the generated interpolant.

(b) The interpolant can be easily defined, without solving large

systems or performing expensive computations.

(c) When applied to Runge’s function, this method produces an in-
terpolant that converges to the actual function with increasing
number of interpolation points.
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(4) Which of the following methods are not prone to oscillations, when
interpolating through a large number of data points?
(Circle or underline ALL correct answers)

(a) Newton Interpolation.

(b) Polynomial interpolation using Chebyshev points.

(c) Low-order piecewise polynomials.

(5) Which of the following statements, regarding cubic splines, are true?
(Circle or underline ALL correct answers)

(a) The cubic spline method requires only function values, not

derivatives, and produces a result with continuous second derivatives.

(b) Hermite splines require both function values and derivative values,

but the computation is very easy and can be performed

independently on each interval.

(c) Although Hermite splines are easier to compute, the interpolation
error only scales proportionately to h3, while cubic splines have
the error decreasing proportionately to h4.

(6) Which of the following statements, regarding the cost of methods for
solving an n× n linear system Ax = b, are true?
(Circle or underline ALL correct answers)

(a) The cost of computing the LU factorization is generally propor-
tional to n2.

(b) The cost of backward substitution on a dense upper triangular

matrix is generally proportional to n2.

(c) If a matrix A has no more than 3 nonzero entries per row,

the cost of each iteration of the Jacobi method is proportional to n.

(7) Which of the following statements, regarding numerical integration
methods, are true?
(Circle or underline ALL correct answers)

(a) If the local error of an integration rule scales like O(hd), the global
error will be O(hd+1).

(b) With a second order accurate rule, if we increase the number of
points in the integration rule by 10, we should expect the error to
decrease by approximately a factor of 20.

(c) If a method computes the integral of polynomials up to order d

exactly, then the global error is in the order of O(hd+1).
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(8) Which of the following statements, regarding methods for solving ini-
tial value problems, are true?
(Circle or underline ALL correct answers)

(a) Every step of an explicit method is very inexpensive, but these

methods are restrictive in the maximum time step ∆t that may

be used.

(b) If a differential equation has unstable solutions, using an implicit
method will guarantee convergence to the correct solutions, where
explicit methods would diverge away from the real solution.

(c) Implicit methods can be used to solve systems of ordinary differ-
ential equations, while explicit methods only work with individual
differential equations (with just 1 unknown function).

2. CRITICAL THINKING PROBLEMS. Answer each of the following ques-
tions in approximately 1 short paragraph.

(a) Imagine that you want to generate a function f(x) that interpolates
a large number (hundreds or thousands) of data points (xi, yi). You
also require to be able to compute derivatives of the interpolant, at
arbitrary locations. Explain what technique you would employ, and
why.

Answer Since we anticipate a very large number of data points, it
would be preferable to use a piecewise polynomial method, since
passing a single polynomial through all these data points would likely
be expensive to compute and very sensitive to small changes in the
location of the data points. Among piecewise polynomial interpola-
tion methods, we would rather use cubic splines rather than Hermite
splines, since we don’t have derivative values at our disposal.
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(b) Write the formula describing how the Trapezoidal Rule is used to
solve the initial value problem y′ = −y + sin(y). This should result
in a nonlinear equation for yk+1; write the formula for Newton’s
method, applied to solve this nonlinear equation.

Answer

yk+1 = yk +
∆t

2
(−yk + sin(yk)− yk+1 + sin(yk+1))⇒

⇒
(

1 +
∆t

2

)
yk+1 −

∆t

2
sin(yk+1)−

(
1− ∆t

2

)
yk −

∆t

2
sin(yk) = 0

This is a nonlinear equation of the form f(yk+1) = 0, where

f(y) =

(
1 +

∆t

2

)
y − ∆t

2
sin(y)−

(
1− ∆t

2

)
yk −

∆t

2
sin(yk)

f ′(y) = 1 +
∆t

2
− ∆t

2
cos(y)

Using the last 2 expressions, Newton’s method yields:

y
(n+1)
k+1 = y

(n)
k+1 −

f(y
(n)
k+1)

f ′(y
(n)
k+1)

(c) The motion of an object, attached to the end of a spring is described
by the system of differential equations

x′(t) = v(t)

v′(t) = − k
m
x(t)− b

m
v(t)

where x(t), v(t) are the unknown functions defining the position
and velocity of the object, m is the mass of the object, and k, b are
constants determined by the nature and material composition of the
spring. Write the equations resulting from employing Forward Euler
to compute a solution to this system of equations.

Answer

x(n+1) = x(n) + ∆tv(n)

v(n+1) = v(n) −∆t
k

m
x(n) −∆t

b

m
v(n)
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(d) Describe the reason why the QR factorization is an appealing method
for solving least squares problems. Can you also describe a scenario
where the method of normal equations is also a good alternative,
even possibly preferable to the QR approach?

Answer The most important advantage of the QR factorization is
that it may lead to a much better conditioned system than the normal
equations. The QR method finds the least squares solution by solving
the upper-triangular system Rx = QTb; in this case the condition
number of R is the square root of that of the matrix ATA, which
appears in the normal equations system.

However, when the condition number of ATA is not anticipated to
be prohibitive, the system of normal equations can be a viable al-
ternative, especially since it is very straightforward to compute, and
the matrix ATA is symmetric and positive definite, which allows us
to use not only direct, but also iterative methods to approximate its
solution.
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3. We have discussed that both the Backward Euler method, as well as the
Trapezoidal rule are both stable methods for solving initial value problems
of the form y′ = f(t, y), y(t0) = y0. This excercise investigates some of
the differences of these two stable methods.

Consider the model stable equation y′ = λy, λ < 0. Write the equations
defining the iteration of both the Backward Euler, and Trapezoidal rule
methods. Consider that we decide to use a very large time step ∆t. Show
that when ∆t is very large, the iterates produced by Backward Euler
very quickly decay to zero, while the Trapezoidal rule produces oscillatory
results, which ultimately also decay to zero.

What are the consequences of this observation? Would this be a reason
for prefering one method over the other in certain cases?

Solution Applying Backward Euler to the model equation y′ = λy, λ < 0
gives:

yk+1 = yk + λ∆tyk+1 ⇒ (1− λ∆t)yk+1 = yk ⇒ yk+1 =
1

1− λ∆t
yk

Since

lim
∆t→∞

1

1− λ∆t
yk = 0

we conclude that when using the Backward Euler method with a very
large ∆t, the produced iterates y1, y2, . . . will almost immediately decay
to zero (which, incidentally, is somewhat consistent with the exact solution
y(t) = e−|λ|t). In contrast, Trapezoidal rule yields:

yk+1 = yk +
∆t

2
(λyk + λyk+1)⇒

(
1− λ∆t

2

)
yk+1 =

(
1 +

λ∆t

2

)
yk ⇒

⇒ yk+1 =
1 + λ∆t/2

1− λ∆t/2
yk

Now, in this case:

lim
∆t→∞

1 + λ∆t/2

1− λ∆t/2
yk = lim

∆t→∞

1/∆t+ λ/2

1/∆t− λ/2
yk = (−1)yk = −yk

So, when a very large ∆t is used, Trapezoidal rule has the effect that every
iterate is approximately the negation yk+1 = −yk of the previous value.

Since both Backward Euler and Trapezoidal Rule are stable methods,
they will both ultimately produce a sequence yk that converges to zero,
as does the analytic solution. The difference is that, when using a large
∆t, Backward Euler will converge to zero very rapidly, while Trapezoidal
rule will oscillate between positive/negative values before settling down to
zero.
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4. The general form of an iterative method for solving the system Ax = b
has the form

x(k) = Tx(k−1) + c

where the matrix T and the vector c are such that the equation x = Tx+c
is equivalent to the original system Ax = b.

(a) If x is the exact solution of the system Ax = b, show that

x(k) − x = T
(
x(k−1) − x

)
(b) If r(k) = b − Ax(k) is the residual after the k-th iteration of the

method, show that
r(k) = ATA−1r(k−1)

[Hint: Use the identity rk = −Ae(k), or equivalently ek = −A−1r(k)

which we have proved in class. Here ek = x(k)−x is the error vector
after the k-th iteration.]

(c) Show that
r(k) = ATkA−1r(0)

Solution

(a) The exact solution satisfies x = Tx + c. Subtracting this equation
from x(k) = Tx(k−1) + c (which is the definition of the iterative
method) we obtain

x(k) − x = T
(
x(k−1) − x

)
(b) The previous equation is equivalently written e(k) = Te(k−1). Since

rk = −Ae(k), or equivalently ek = −A−1r(k), we can replace the
error vectors in this equation with:

−A−1r(k) = −TA−1r(k−1) ⇒ r(k) = ATA−1r(k−1)

(c)

r(k) = ATA−1r(k−1) = (ATA−1)(ATA−1)r(k−2) = AT2A−1r(k−2)

= (AT2A−1)(ATA−1)r(k−3) = AT3A−1r(k−3) = · · · = ATkA−1r(0)

7



5. A convenient feature of the normal equations is that we can easily change
them to account for additional equations that are being “added” to a least
squares problem. For example, consider the following m equations (using
n unknowns, with m > n):

c1x
(1)
1 + c2x

(1)
2 + · · ·+ cnx

(1)
n ≈ y(1)

c1x
(2)
1 + c2x

(2)
2 + · · ·+ cnx

(2)
n ≈ y(2)

c1x
(3)
1 + c2x

(3)
2 + · · ·+ cnx

(3)
n ≈ y(3)

...

c1x
(m)
1 + c2x

(m)
2 + · · ·+ cnx

(m)
n ≈ y(m)

We can write these equations as the least squares problem Ax ≈ b where

A =


x

(1)
1 x

(1)
2 · · · x

(1)
n

x
(2)
1 x

(2)
2 · · · x

(2)
n

x
(3)
1 x

(3)
2 · · · x

(3)
n

...
...

...

x
(m)
1 x

(m)
2 · · · x

(m)
n

 , x =


c1
c2
...
cn

 , b =


y(1)

y(2)

y(3)

...
y(m)


The least squares solution can be obtained by solving the normal equations

ATAx = ATb

Now, assume that we want to add the following additional equation to our
least squares problem

c1x
(m+1)
1 + c2x

(m+1)
2 + · · ·+ cnx

(m+1)
n ≈ y(m+1)

Show that the normal equations corresponding to this enlarged least squares
problem take the form

(ATA + wwT )x = ATb + y(m+1)w

where w = [x
(m+1)
1 x

(m+1)
2 · · · x(m+1)

n ]T .

[Hint: Write this new least squares problem, with m + 1 equations, as

Âx ≈ b̂, and observe that Â =

[
A
wT

]
and b̂ =

(
b

y(m+1)

)
.]
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Solution The new least squares problem, with the additional equation
added, is written in matrix form as Âx ≈ b̂, where:

Â =



x
(1)
1 x

(1)
2 · · · x

(1)
n

x
(2)
1 x

(2)
2 · · · x

(2)
n

x
(3)
1 x

(3)
2 · · · x

(3)
n

...
...

...

x
(m)
1 x

(m)
2 · · · x

(m)
n

x
(m+1)
1 x

(m+1)
2 · · · x

(m+1)
n


=

[
A
wT

]
, b̂ =



y(1)

y(2)

y(3)

...
y(m)

y(m+1)


=

(
b

y(m+1)

)

where w = [x
(m+1)
1 x

(m+1)
2 · · · x(m+1)

n ]T .

The normal equations formed from this new system Âx ≈ b̂ will be:

ÂT Âx ≈ ÂT b̂⇒

⇒
[
AT w

] [ A
wT

]
x =

[
AT w

]( b
y(m+1)

)
⇒

⇒ (ATA + wwT )x = ATb + y(m+1)w
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