Equivalence of CFG's and PDA's

Mridul Aanjaneya

Stanford University

July 24, 2012

- A PDA is an automaton equivalent to the CFG in language-defining power.
- Only the nonterministic PDA's define all possible CFL's.
- But the deterministic version models parsers.
 - Most programming languages have deterministic PDA's.

- Think of an ε-NFA with the additional power that it can manipulate a stack.
- Its moves are determined by:
 - The current state (of its NFA).
 - 2 The current input symbol (or ε), and
 - The current symbol on top of its stack.

- Being nondeterministic, the PDA can have a choice of next moves.
- In each choice, the PDA can:
 - Change state, and also
 - Replace the top symbol on the stack by a sequence of zero or more symbols.
 - Zero symbols = pop.
 - Many symbols = sequence of pushes.

- A PDA is described by:
 - A finite set of states (Q, typically).
 - 2 An input alphabet (Σ, typically).
 - A stack alphabet (F, typically).
 - A transition function (δ , typically).
 - **(5)** A start state $(q_0, in Q, typically)$.
 - **o** A start symbol (Z_0 , in Γ , typically).
 - **(**) A set of final states ($F \subseteq Q$, typically).

- Takes three arguments:
 - A state in Q.
 - **2** An input which is either a symbol in Σ or ε .
 - A stack symbol in Γ.
- $\delta(q,a,Z)$ is a set of zero or more actions of the form (p,α) .
 - **p** is a state, α is a string of stack symbols.

- If δ(q,a,Z) contains (p,α) among its actions, then one thing the PDA can do in state q, with a at the front of the input, and Z on top of the stack is:
 - Change the state to p.
 - 2 Remove a from the front of the input (but a may be ε).
 - **(3)** Replace Z on the top of the stack by α .

- Design a PDA to accept $\{0^n1^n \mid n \ge 1\}$.
- The states:
 - q = start state. We are in state q if we have seen only 0's so far.
 - p = we've seen at least one 1 and may now proceed only if the inputs are 1's.
 - f = final state; accept.

- The stack symbols:
 - Z_0 = start symbol. Also marks the bottom of the stack, so we know we have counted the same number of 1's as 0's.
 - X = marker, used to count the number of 0's seen on the input.

• The transitions:

- $\delta(q,0,Z_0) = \{(q,XZ_0)\}.$
- δ(q,0,X) = {(q,XX)}. These two rules cause one X to be pushed onto the stack for each 0 read from the input.
- δ(q,1,X) = {(p,ε)}. When we see a 1, go to state p and pop one X.
- $\delta(\mathbf{p},\mathbf{1},\mathbf{X}) = \{(\mathbf{p},\varepsilon)\}$. Pop one X per 1.
- $\delta(\mathbf{p},\varepsilon,\mathbf{Z}_0) = \{(\mathbf{f},\mathbf{Z}_0)\}$. Accept at bottom.

Mridul Aanjaneya

- We can formalize the pictures just seen with an instantaneous description (ID).
- An ID is a triple (q,w,α) , where:
 - q is the current state.
 - w is the remaining input.
 - **(a)** α is the stack contents, top at the left.

- To say that ID I can becomes ID J in one move of the PDA, we can write I ⊢ J.
- Formally, (q,aw,Xα) ⊢ (p,w,βα) for any w and α, if δ(q,a,X) contains (p,β).
- Extend \vdash to \vdash^* , meaning zero or more moves, by:
 - Basis: | ⊢* |.
 - Induction: If $I \vdash^* J$ and $J \vdash K$, then $I \vdash^* K$.

• Using the previous example PDA, we can describe the sequence of moves by

 $\begin{array}{rcl} (q,000111,Z_0) & \vdash & (q,00111,XZ_0) \vdash (q,0111,XXZ_0) \\ & \vdash & (q,111,XXXZ_0) \vdash (p,11,XXZ_0) \\ & \vdash & (p,1,XZ_0) \vdash (p,\varepsilon,Z_0) \\ & \vdash & (f,\varepsilon,Z_0) \end{array}$

• Thus, $(q,000111,Z_0) \vdash^* (f,\varepsilon,Z_0)$.

• Using the previous example PDA, we can describe the sequence of moves by

$$\begin{array}{rcl} (q,000111,Z_0) & \vdash & (q,00111,XZ_0) \vdash (q,0111,XXZ_0) \\ & \vdash & (q,111,XXXZ_0) \vdash (p,11,XXZ_0) \\ & \vdash & (p,1,XZ_0) \vdash (p,\varepsilon,Z_0) \\ & \vdash & (f,\varepsilon,Z_0) \end{array}$$

• Thus, $(q,000111,Z_0) \vdash^* (f,\varepsilon,Z_0)$.

Question

What would happen on the input 0001111?

$\begin{array}{rcl} (q,0001111,Z_0) & \vdash & (q,001111,XZ_0) \vdash (q,01111,XXZ_0) \\ & \vdash & (q,1111,XXXZ_0) \vdash (p,111,XXZ_0) \\ & \vdash & (p,11,XZ_0) \vdash (p,1,Z_0) \\ & \vdash & (f,1,Z_0) \end{array}$

- Note: The last action is legal because a PDA can use ε input even if input remains.
- The last ID has no move.
- 0001111 is not accepted, because the input is not completely consumed.

- We represented moves of a FA by an extended δ , which did not mention the input yet to be read.
- We could have chosen a similar notation for PDA's, where the FA state is replaced by a state-stack combination.

- Similarly, we could have chosen a FA notation with ID's.
 - Just drop the stack notation.
- Why the difference?
- FA tend to models thinks like protocols with infinitely long inputs.
- PDA model parsers, which are given a fixed program to process.

- The common way to define the language of a PDA is by final state.
- If P is a PDA, then L(P) is the set of strings w such that
 (q₀,w,Z₀) ⊢* (f,ε,α) for final state f and any α.

- Another language defined by the same PDA is by empty stack.
- If P is a PDA, then N(P) is the set of strings w such that (q₀,w,Z₀) ⊢* (q,ε,ε) for any state q.

If L = L(P), then there is another PDA P' such that L = N(P')
If L = N(P), then there is another PDA P" such that L = L(P").

- P' will simulate P.
- If P accepts, P' will empty its stack.
- P' has to avoid accidentally emptying its stack, so it uses a special bottom marker to catch the case where P empties its stack without accepting.

- P' has all the states, symbols, and moves of P, plus:
 - Stack symbol X₀, used to guard the stack bottom against accidental emptying.
 - New start state s and erase state e.
 - $\delta(s,\varepsilon,X_0) = \{(q_0,Z_0X_0)\}$. Get P started.
 - δ(f,ε,X) = δ(e,ε,X) = {(e,ε)} for any final state f of P and any stack symbol X.

- P" simulates P.
- P" has a special bottom-marker to catch the situation where P empties its stack.
- If so, P" accepts.

- P" has all the states, symbols, and moves of P, plus:
 - Stack symbol X₀, used to guard the stack bottom.
 - New start state s and final state f.
 - $\delta(\mathsf{s},\varepsilon,\mathsf{X}_0) = \{(\mathsf{q}_0,\mathsf{Z}_0\mathsf{X}_0)\}. \text{ Get }\mathsf{P} \text{ started}.$
 - $\delta(q,\varepsilon,X_0) = \{(f,\varepsilon)\}$ for any state q of P.

- To be deterministic, there must be at most one choice of move for any state q, input symbol a, and stack symbol X.
- In addition, there must not be a choice between using input ε or real input.
- Formally, $\delta(q,a,X)$ and $\delta(q,\varepsilon,X)$ cannot both be nonempty.

- When we talked about closure properties of regular languages, it was useful to be able to jump between RE and DFA representations.
- Similarly, CFG's and PDA's are both useful to deal with properties of CFL's.

- Also, PDA's, being algorithmic, are often easier to use when arguing that a language is a CFL.
- **Example:** It is easy to see how a PDA can recognize balanced parentheses, not so easy as a grammar.
- But all depends on knowing that CFG's and PDA's both define the CFL's.

- Let L = L(G).
- Construct PDA P such that N(P) = L.
- P has:
 - One state q.
 - Input symbols = terminals of G.
 - Stack symbols = all symbols of G.
 - Start symbol = start symbol of G.

- Given input w, P will step through a leftmost derivation of w from the start symbol S.
- Since P can't know what this derivation is, or even what the end of w is, it uses nondeterminism to guess the production to use at each step.

- At each step, P represents some left-sentential form (step of a leftmost derivation).
- If the stack of P is α, and P has so far consumed x from its input, then P represents left-sentential form xα.
- At empty stack, the input consumed is a string in L(G).

• $\delta(q,a,a) = (q,\varepsilon)$. (Type 1 rules)

- This step does not change the LSF represented, but moves responsibility for a from the stack to the consumed input.
- ② If A → α is a production of G, then $\delta(q, \varepsilon, A)$ contains (q, α) . (Type 2 rules)
 - Guess a production for A, and represent the next LSF in the derivation.

- We need to show that (q,wx,S) ⊢* (q,x,α) for any x if and only if S ⇒^{*}_{Im} wα.
- **Part 1:** only if is an induction on the number of steps made by P.
- Basis: 0 steps.
 - Then $\alpha = S$, $w = \varepsilon$, and $S \Rightarrow_{Im}^* S$ is surely true.

- Consider n moves of P: (q,wx,S) ⊢* (q,x,α) and assume the IH for sequences of n-1 moves.
- There are two cases, depending on whether the last move uses a Type 1 or Type 2 rule.

- The move sequence must be of the form $(q,yax,S) \vdash^*$ $(q,ax,a\alpha) \vdash (q,x,\alpha)$, where ya = w.
- By the **IH** applied to the first n-1 steps, $S \Rightarrow_{Im}^* ya\alpha$.
- But $y_a = w$, so $S \Rightarrow_{Im}^* w\alpha$.

- The move sequence must be of the form $(q,wx,S) \vdash^* (q,x,A\beta) \vdash (q,x,\gamma\beta)$, where $A \rightarrow \gamma$ is a production and $\alpha = \gamma\beta$.
- By the **IH** applied to the first n-1 steps, $S \Rightarrow_{Im}^* wA\beta$.
- Thus, $S \Rightarrow^*_{Im} w\gamma\beta = w\alpha$.

- We also must prove that if $S \Rightarrow_{Im}^* w\alpha$, then $(q,wx,S) \vdash^* (q,x,\alpha)$ for any x.
- Induction on number of steps in the leftmost derivation.
- Ideas are similar.

- We now have (q,wx,S) ⊢* (q,x,α) for any x if and only if S ⇒^{*}_{Im} wα.
- In particular, let $\mathbf{x} = \boldsymbol{\alpha} = \boldsymbol{\varepsilon}$.
- Then $(q,w,S) \vdash^* (q,\varepsilon,\varepsilon)$ if and only if $S \Rightarrow^*_{Im} w$.
- That is, $w \in N(P)$ if and only if $w \in L(G)$.

- Now assume L=N(P).
- We'll construct a CFG G such that L = L(G).
- Intuition: G will have variables generating exactly the inputs that cause P to have the net effect of popping a stack symbol X while going from state p to state q.
 - P never gets below this X while doing so.

- G's variables are of the form [pXq].
- This variable generates all and only the strings w such that

 $(p, w, X) \vdash^* (q, \varepsilon, \varepsilon)$

• Also a start symbol S we'll talk about later.

- Each production for [pXq] comes from a move of P in state p with stack symbol X.
- Simplest case: $\delta(p,a,X)$ contains (q,ε) .
- Then the production is $[pXq] \rightarrow a$.
 - Note that a can be an input symbol or $\varepsilon.$
- Here, [pXq] generates a, because reading a is one way to pop X and go from p to q.

- Next simplest case: δ(p,a,X) contains (r,Y) for some state r and symbol Y.
- G has production $[pXq] \rightarrow a[rYq]$.
 - We can erase X and go from p to q by reading a (entering state r and replacing the X by Y) and then reading some w that gets P from r to q while erasing the Y.
- Note: $[pXq] \Rightarrow^* aw$ whenever $[rYq] \Rightarrow^* w$.

- Third simplest case: δ(p,a,X) contains (r,YZ) for some state r and symbols Y and Z.
- Now, P has replaced X by YZ.
- To have the net effect of erasing X, P must erase Y, going from state r to some state s, and then erase Z, going from s to q.

• Since we do not know state s, we must generate a family of productions:

 $[pXq] \rightarrow a[rYs][sZq]$

• It follows $[pXq] \Rightarrow^* awx$ whenever $[rYs] \Rightarrow^* w$ and $[sZq] \Rightarrow^* x$.

- Suppose $\delta(p,a,X)$ contains $(r,Y_1,...,Y_k)$ for some state r and $k \ge 3$.
- Generate family of productions

 $[pXq] \to a[rY_1s_1][s_1Y_2s_2] \dots [s_{k-2}Y_{k-1}s_{k-1}][s_{k-1}Y_kq]$

- We can prove that $(q_0, w, Z_0) \vdash^* (p, \varepsilon, \varepsilon)$ iff $[q_0 Z_0 p] \Rightarrow^* w$.
 - Proof is two easy inductions. Left as exercises.
- But state p can be anything.
- Thus, add to G another variable S, the start symbol, and add productions $S \to [q_0 Z_0 p]$ for each state p.