Equivalence of CFG's and PDA's

Mridul Aanjaneya

July 24, 2012

Recap: Pushdown Automata

- A PDA is an automaton equivalent to the CFG in language-defining power.
- Only the nonterministic PDA's define all possible CFL's.
- But the deterministic version models parsers.
- Most programming languages have deterministic PDA's.

Recap: Intuition

- Think of an ε-NFA with the additional power that it can manipulate a stack.
- Its moves are determined by:
(1) The current state (of its NFA).
(2) The current input symbol (or ε), and
(3) The current symbol on top of its stack.

Recap: Intuition

- Being nondeterministic, the PDA can have a choice of next moves.
- In each choice, the PDA can:
(1) Change state, and also
(2) Replace the top symbol on the stack by a sequence of zero or more symbols.
- Zero symbols = pop.
- Many symbols = sequence of pushes.

Recap: PDA Formalism

- A PDA is described by:
(1) A finite set of states (Q, typically).
(2) An input alphabet (Σ, typically).
(3) A stack alphabet (Γ, typically).
(9) A transition function (δ, typically).
(3) A start state (q_{0}, in Q, typically).
(0) A start symbol (Z_{0}, in Γ, typically).
(3) A set of final states ($F \subseteq Q$, typically).

Recap: The Transition Function

- Takes three arguments:
(1) A state in Q.
(2) An input which is either a symbol in Σ or ε.
(3) A stack symbol in Γ.
- $\delta(\mathrm{q}, \mathrm{a}, \mathrm{Z})$ is a set of zero or more actions of the form (p, α).
- p is a state, α is a string of stack symbols.

Recap: Actions of the PDA

- If $\delta(\mathrm{q}, \mathrm{a}, \mathrm{Z})$ contains (p, α) among its actions, then one thing the PDA can do in state q, with a at the front of the input, and Z on top of the stack is:
(1) Change the state to p.
(2) Remove a from the front of the input (but a may be ε).
(3) Replace Z on the top of the stack by α.

Example: PDA

- Design a PDA to accept $\left\{0^{n} 1^{n} \mid n \geq 1\right\}$.
- The states:
- $\mathrm{q}=$ start state. We are in state q if we have seen only 0 's so far.
- $p=$ we've seen at least one 1 and may now proceed only if the inputs are 1's.
- $\mathrm{f}=$ final state; accept.

Example: PDA

- The stack symbols:
- $Z_{0}=$ start symbol. Also marks the bottom of the stack, so we know we have counted the same number of 1's as 0's.
- $X=$ marker, used to count the number of 0 's seen on the input.

Example: PDA

- The transitions:
- $\delta\left(\mathrm{q}, 0, \mathrm{Z}_{0}\right)=\left\{\left(\mathrm{q}, \mathrm{XZ} \mathrm{Z}_{0}\right)\right\}$.
- $\delta(\mathrm{q}, 0, \mathrm{X})=\{(\mathrm{q}, \mathrm{XX})\}$. These two rules cause one X to be pushed onto the stack for each 0 read from the input.
- $\delta(\mathrm{q}, 1, \mathrm{X})=\{(\mathrm{p}, \varepsilon)\}$. When we see a 1 , go to state p and pop one X .
- $\delta(p, 1, X)=\{(p, \varepsilon)\}$. Pop one X per 1 .
- $\delta\left(\mathrm{p}, \varepsilon, \mathrm{Z}_{0}\right)=\left\{\left(\mathrm{f}, \mathrm{Z}_{0}\right)\right\}$. Accept at bottom.

Actions of the Example PDA

Instantaneous Descriptions

- We can formalize the pictures just seen with an instantaneous description (ID).
- An ID is a triple (q, w, α), where:
(1) q is the current state.
(2) w is the remaining input.
(3) α is the stack contents, top at the left.

The "Goes-To" Relation

- To say that ID I can becomes ID J in one move of the PDA, we can write $I \vdash J$.
- Formally, $(\mathrm{q}, \mathrm{aw}, \mathrm{X} \alpha) \vdash(\mathrm{p}, \mathrm{w}, \beta \alpha)$ for any w and α, if $\delta(\mathrm{q}, \mathrm{a}, \mathrm{X})$ contains (p, β).
- Extend \vdash to \vdash^{*}, meaning zero or more moves, by:
- Basis: । \vdash^{*} I.
- Induction: If $\mathrm{I} \vdash^{*} \mathrm{~J}$ and $\mathrm{J} \vdash \mathrm{K}$, then $\mathrm{I} \vdash^{*} \mathrm{~K}$.

Example: Goes-To

- Using the previous example PDA, we can describe the sequence of moves by

$$
\begin{aligned}
\left(q, 000111, Z_{0}\right) & \vdash\left(q, 00111, X Z_{0}\right) \vdash\left(q, 0111, X X Z_{0}\right) \\
& \vdash\left(q, 111, X X X Z_{0}\right) \vdash\left(p, 11, X X Z_{0}\right) \\
& \vdash\left(p, 1, X Z_{0}\right) \vdash\left(p, \varepsilon, Z_{0}\right) \\
& \vdash\left(f, \varepsilon, Z_{0}\right)
\end{aligned}
$$

- Thus, $\left(q, 000111, Z_{0}\right) \vdash^{*}\left(f, \varepsilon, Z_{0}\right)$.

Example: Goes-To

- Using the previous example PDA, we can describe the sequence of moves by

$$
\begin{aligned}
\left(q, 000111, Z_{0}\right) & \vdash\left(q, 00111, X Z_{0}\right) \vdash\left(q, 0111, X X Z_{0}\right) \\
& \vdash\left(q, 111, X X X Z_{0}\right) \vdash\left(p, 11, X X Z_{0}\right) \\
& \vdash\left(p, 1, X Z_{0}\right) \vdash\left(p, \varepsilon, Z_{0}\right) \\
& \vdash\left(f, \varepsilon, Z_{0}\right)
\end{aligned}
$$

- Thus, $\left(q, 000111, Z_{0}\right) \vdash^{*}\left(f, \varepsilon, Z_{0}\right)$.

Question

What would happen on the input 0001111 ?

Answer

$$
\begin{aligned}
\left(q, 0001111, Z_{0}\right) & \vdash\left(q, 001111, X Z_{0}\right) \vdash\left(q, 01111, X X Z_{0}\right) \\
& \vdash\left(q, 1111, X X X Z_{0}\right) \vdash\left(p, 111, X X Z_{0}\right) \\
& \vdash\left(p, 11, X Z_{0}\right) \vdash\left(p, 1, Z_{0}\right) \\
& \vdash\left(f, 1, Z_{0}\right)
\end{aligned}
$$

- Note: The last action is legal because a PDA can use ε input even if input remains.
- The last ID has no move.
- 0001111 is not accepted, because the input is not completely consumed.

Aside: FA and PDA Notations

- We represented moves of a FA by an extended δ, which did not mention the input yet to be read.
- We could have chosen a similar notation for PDA's, where the FA state is replaced by a state-stack combination.

FA and PDA Notations

- Similarly, we could have chosen a FA notation with ID's.
- Just drop the stack notation.
- Why the difference?
- FA tend to models thinks like protocols with infinitely long inputs.
- PDA model parsers, which are given a fixed program to process.

Language of a PDA

- The common way to define the language of a PDA is by final state.
- If P is a PDA, then $L(P)$ is the set of strings w such that $\left(q_{0}, \mathrm{w}, \mathrm{Z}_{0}\right) \vdash^{*}(\mathrm{f}, \varepsilon, \alpha)$ for final state f and any α.

Language of a PDA

- Another language defined by the same PDA is by empty stack.
- If P is a PDA, then $N(P)$ is the set of strings w such that $\left(q_{0}, w, Z_{0}\right) \vdash^{*}(q, \varepsilon, \varepsilon)$ for any state q.

Equivalence of Language Definitions

(1) If $L=L(P)$, then there is another PDA P^{\prime} such that

$$
\mathrm{L}=\mathrm{N}\left(\mathrm{P}^{\prime}\right)
$$

(2) If $L=N(P)$, then there is another PDA $P^{\prime \prime}$ such that

$$
\mathrm{L}=\mathrm{L}\left(\mathrm{P}^{\prime \prime}\right)
$$

Proof: $L(P) \rightarrow N\left(P^{\prime}\right)$ Intuition

- P^{\prime} will simulate P.
- If P accepts, P^{\prime} will empty its stack.
- P^{\prime} has to avoid accidentally emptying its stack, so it uses a special bottom marker to catch the case where P empties its stack without accepting.

Proof: $L(P) \rightarrow N\left(P^{\prime}\right)$

- P^{\prime} has all the states, symbols, and moves of P, plus:
(1) Stack symbol X_{0}, used to guard the stack bottom against accidental emptying.
(2) New start state s and erase state e.
(3) $\delta\left(\mathrm{s}, \varepsilon, \mathrm{X}_{0}\right)=\left\{\left(\mathrm{q}_{0}, \mathrm{Z}_{0} \mathrm{X}_{0}\right)\right\}$. Get P started.
(3) $\delta(\mathrm{f}, \varepsilon, \mathrm{X})=\delta(\mathrm{e}, \varepsilon, \mathrm{X})=\{(\mathrm{e}, \varepsilon)\}$ for any final state f of P and any stack symbol X.

Proof: $N(P) \rightarrow L\left(P^{\prime \prime}\right)$ Intuition

- $P^{\prime \prime}$ simulates P.
- P" has a special bottom-marker to catch the situation where P empties its stack.
- If so, P" accepts.

Proof: N(P) \rightarrow L(P")

- $P^{\prime \prime}$ has all the states, symbols, and moves of P , plus:
(1) Stack symbol X_{0}, used to guard the stack bottom.
(2) New start state s and final state f.
(3) $\delta\left(\mathrm{s}, \varepsilon, \mathrm{X}_{0}\right)=\left\{\left(\mathrm{q}_{0}, \mathrm{Z}_{0} \mathrm{X}_{0}\right)\right\}$. Get P started.
(0) $\delta\left(\mathrm{q}, \varepsilon, \mathrm{X}_{0}\right)=\{(\mathrm{f}, \varepsilon)\}$ for any state q of P .

Deterministic PDA's

- To be deterministic, there must be at most one choice of move for any state q, input symbol a, and stack symbol X.
- In addition, there must not be a choice between using input ε or real input.
- Formally, $\delta(\mathrm{q}, \mathrm{a}, \mathrm{X})$ and $\delta(\mathrm{q}, \varepsilon, \mathrm{X})$ cannot both be nonempty.

Equivalence of PDA's and CFG's: Overview

- When we talked about closure properties of regular languages, it was useful to be able to jump between RE and DFA representations.
- Similarly, CFG's and PDA's are both useful to deal with properties of CFL's.

Equivalence of PDA's and CFG's: Overview

- Also, PDA's, being algorithmic, are often easier to use when arguing that a language is a CFL.
- Example: It is easy to see how a PDA can recognize balanced parentheses, not so easy as a grammar.
- But all depends on knowing that CFG's and PDA's both define the CFL's.

Converting a CFG to a PDA

- Let $\mathrm{L}=\mathrm{L}(\mathrm{G})$.
- Construct PDA P such that $N(P)=L$.
- P has:
- One state q.
- Input symbols $=$ terminals of G.
- Stack symbols $=$ all symbols of G.
- Start symbol $=$ start symbol of G .

Intuition about P

- Given input w, P will step through a leftmost derivation of w from the start symbol S.
- Since P can't know what this derivation is, or even what the end of w is, it uses nondeterminism to guess the production to use at each step.

Intuition about P

- At each step, P represents some left-sentential form (step of a leftmost derivation).
- If the stack of P is α, and P has so far consumed \times from its input, then P represents left-sentential form $\times \alpha$.
- At empty stack, the input consumed is a string in $L(G)$.

Transition Function of P

(1) $\delta(\mathrm{q}, \mathrm{a}, \mathrm{a})=(\mathrm{q}, \varepsilon)$. (Type 1 rules)

- This step does not change the LSF represented, but moves responsibility for a from the stack to the consumed input.
(2) If $\mathrm{A} \rightarrow \alpha$ is a production of G , then $\delta(\mathrm{q}, \varepsilon, \mathrm{A})$ contains (q, α). (Type 2 rules)
- Guess a production for A, and represent the next LSF in the derivation.

Proof that $N(P)=L(G)$

- We need to show that $(q, w x, S) \vdash^{*}(q, x, \alpha)$ for any x if and only if $S \Rightarrow{ }_{1 m}^{*} w \alpha$.
- Part 1: only if is an induction on the number of steps made by P.
- Basis: 0 steps.
- Then $\alpha=\mathrm{S}, \mathrm{w}=\varepsilon$, and $\mathrm{S} \Rightarrow{ }_{1 \mathrm{~m}}^{*} \mathrm{~S}$ is surely true.

Induction for Part 1

- Consider n moves of $P:(q, w x, S) \vdash^{*}(q, x, \alpha)$ and assume the IH for sequences of $n-1$ moves.
- There are two cases, depending on whether the last move uses a Type 1 or Type 2 rule.

Use of a Type 1 Rule

- The move sequence must be of the form (q,yax,S) \vdash^{*} $(\mathrm{q}, \mathrm{ax}, \mathrm{a} \alpha) \vdash(\mathrm{q}, \mathrm{x}, \alpha)$, where $\mathrm{ya}=\mathrm{w}$.
- By the IH applied to the first $\mathrm{n}-1$ steps, $\mathrm{S} \Rightarrow{ }_{\mathrm{Im}}^{*}$ ya α.
- But ya $=\mathrm{w}$, so $\mathrm{S} \Rightarrow{ }_{\mathrm{Im}}^{*} \mathrm{w} \alpha$.

Use of a Type 2 Rule

- The move sequence must be of the form $(q, w x, S) \vdash^{*}(q, x, A \beta)$ $\vdash(\mathrm{q}, \mathrm{x}, \gamma \beta)$, where $\mathrm{A} \rightarrow \gamma$ is a production and $\alpha=\gamma \beta$.
- By the IH applied to the first $\mathrm{n}-1$ steps, $\mathrm{S} \Rightarrow{ }_{\mathrm{Im}}^{*} w A \beta$.
- Thus, $\mathrm{S} \Rightarrow{ }_{\mathrm{lm}}^{*} \mathrm{w} \gamma \beta=\mathrm{w} \alpha$.

Proof of Part 2 ("if")

- We also must prove that if $S \Rightarrow{ }_{1 m}^{*} w \alpha$, then $(q, w x, S) \vdash^{*}$ (q, x, α) for any x .
- Induction on number of steps in the leftmost derivation.
- Ideas are similar.

Proof - Completion

- We now have $(q, w x, S) \vdash^{*}(q, x, \alpha)$ for any x if and only if S $\Rightarrow{ }_{1 \mathrm{~m}}^{*} \mathrm{w} \alpha$.
- In particular, let $\mathrm{x}=\alpha=\varepsilon$.
- Then $(q, w, S) \vdash^{*}(q, \varepsilon, \varepsilon)$ if and only if $S \Rightarrow{ }_{\text {lm }}^{*} w$.
- That is, $w \in N(P)$ if and only if $w \in L(G)$.

From a PDA to a CFG

- Now assume $\mathrm{L}=\mathrm{N}(\mathrm{P})$.
- We'll construct a CFG G such that $L=L(G)$.
- Intuition: G will have variables generating exactly the inputs that cause P to have the net effect of popping a stack symbol X while going from state p to state q.
- P never gets below this X while doing so.

Variables of G

- G's variables are of the form [pXq].
- This variable generates all and only the strings w such that

$$
(p, w, X) \vdash^{*}(q, \varepsilon, \varepsilon)
$$

- Also a start symbol S we'll talk about later.

Productions of G

- Each production for $[\mathrm{pXq}]$ comes from a move of P in state p with stack symbol X.
- Simplest case: $\delta(\mathrm{p}, \mathrm{a}, \mathrm{X})$ contains (q, ε).
- Then the production is $[\mathrm{pXq}] \rightarrow \mathrm{a}$.
- Note that a can be an input symbol or ε.
- Here, $[\mathrm{pXq}$] generates a , because reading a is one way to pop X and go from p to q.

Productions of G

- Next simplest case: $\delta(p, a, X)$ contains (r, Y) for some state r and symbol Y .
- G has production [pXq] $\rightarrow a[r Y q]$.
- We can erase X and go from p to q by reading a (entering state r and replacing the X by Y) and then reading some w that gets P from r to q while erasing the Y.
- Note: $[\mathrm{pXq}] \Rightarrow^{*}$ aw whenever $[\mathrm{rYq}] \Rightarrow^{*} \mathrm{w}$.

Productions of G

- Third simplest case: $\delta(p, a, X)$ contains ($r, Y Z$) for some state r and symbols Y and Z.
- Now, P has replaced X by YZ.
- To have the net effect of erasing X, P must erase Y, going from state r to some state s, and then erase Z, going from s to q.

Action of P

Productions of G

- Since we do not know state s, we must generate a family of productions:

$$
[p X q] \rightarrow a[r Y s][s Z q]
$$

- It follows $[p \mathrm{Xq}] \Rightarrow^{*}$ awx whenever $[\mathrm{rYs}] \Rightarrow^{*} w$ and $[\mathrm{sZq}] \Rightarrow^{*} x$.

Productions of G: General Case

- Suppose $\delta(\mathrm{p}, \mathrm{a}, \mathrm{X})$ contains ($r, \mathrm{Y}_{1}, \ldots, \mathrm{Y}_{k}$) for some state r and $\mathrm{k} \geq 3$.
- Generate family of productions

$$
[p X q] \rightarrow a\left[r Y_{1} s_{1}\right]\left[s_{1} Y_{2} s_{2}\right] \ldots\left[s_{k-2} Y_{k-1} s_{k-1}\right]\left[s_{k-1} Y_{k} q\right]
$$

Completion of the Construction

- We can prove that $\left(q_{0}, w, Z_{0}\right) \vdash^{*}(p, \varepsilon, \varepsilon)$ iff $\left[q_{0} Z_{0} p\right] \Rightarrow^{*} w$.
- Proof is two easy inductions. Left as exercises.
- But state p can be anything.
- Thus, add to G another variable S, the start symbol, and add productions $S \rightarrow\left[q_{0} Z_{0} p\right]$ for each state p.

