
Equivalence of CFG’s and PDA’s

Mridul Aanjaneya

Stanford University

July 24, 2012

Mridul Aanjaneya Automata Theory 1/ 53



Recap: Pushdown Automata

• A PDA is an automaton equivalent to the CFG in
language-defining power.

• Only the nonterministic PDA’s define all possible CFL’s.

• But the deterministic version models parsers.

Most programming languages have deterministic PDA’s.

Mridul Aanjaneya Automata Theory 2/ 53



Recap: Intuition

• Think of an ε-NFA with the additional power that it can
manipulate a stack.

• Its moves are determined by:
1 The current state (of its NFA).
2 The current input symbol (or ε), and
3 The current symbol on top of its stack.

Mridul Aanjaneya Automata Theory 3/ 53



Recap: Intuition

• Being nondeterministic, the PDA can have a choice of next
moves.

• In each choice, the PDA can:
1 Change state, and also
2 Replace the top symbol on the stack by a sequence of zero or

more symbols.

Zero symbols = pop.
Many symbols = sequence of pushes.

Mridul Aanjaneya Automata Theory 4/ 53



Recap: PDA Formalism

• A PDA is described by:
1 A finite set of states (Q, typically).
2 An input alphabet (Σ, typically).
3 A stack alphabet (Γ, typically).
4 A transition function (δ, typically).
5 A start state (q0, in Q, typically).
6 A start symbol (Z0, in Γ, typically).
7 A set of final states (F ⊆ Q, typically).

Mridul Aanjaneya Automata Theory 5/ 53



Recap: The Transition Function

• Takes three arguments:
1 A state in Q.
2 An input which is either a symbol in Σ or ε.
3 A stack symbol in Γ.

• δ(q,a,Z) is a set of zero or more actions of the form (p,α).

p is a state, α is a string of stack symbols.

Mridul Aanjaneya Automata Theory 6/ 53



Recap: Actions of the PDA

• If δ(q,a,Z) contains (p,α) among its actions, then one thing
the PDA can do in state q, with a at the front of the input,
and Z on top of the stack is:

1 Change the state to p.
2 Remove a from the front of the input (but a may be ε).
3 Replace Z on the top of the stack by α.

Mridul Aanjaneya Automata Theory 7/ 53



Example: PDA

• Design a PDA to accept {0n1n | n ≥ 1}.
• The states:

q = start state. We are in state q if we have seen only 0’s so
far.
p = we’ve seen at least one 1 and may now proceed only if the
inputs are 1’s.
f = final state; accept.

Mridul Aanjaneya Automata Theory 8/ 53



Example: PDA

• The stack symbols:

Z0 = start symbol. Also marks the bottom of the stack, so we
know we have counted the same number of 1’s as 0’s.
X = marker, used to count the number of 0’s seen on the
input.

Mridul Aanjaneya Automata Theory 9/ 53



Example: PDA

• The transitions:

δ(q,0,Z0) = {(q,XZ0)}.
δ(q,0,X) = {(q,XX)}. These two rules cause one X to be
pushed onto the stack for each 0 read from the input.
δ(q,1,X) = {(p,ε)}. When we see a 1, go to state p and pop
one X.
δ(p,1,X) = {(p,ε)}. Pop one X per 1.
δ(p,ε,Z0) = {(f,Z0)}. Accept at bottom.

Mridul Aanjaneya Automata Theory 10/ 53



Actions of the Example PDA

q

Z

0 0 0 111

0

Mridul Aanjaneya Automata Theory 11/ 53



Actions of the Example PDA

q

X

0 0 1 11

Z0

Mridul Aanjaneya Automata Theory 12/ 53



Actions of the Example PDA

q

X

0 1 1 1

X
Z0

Mridul Aanjaneya Automata Theory 13/ 53



Actions of the Example PDA

q

X

1 1 1

X
X
Z0

Mridul Aanjaneya Automata Theory 14/ 53



Actions of the Example PDA

p

X

1 1

X
Z0

Mridul Aanjaneya Automata Theory 15/ 53



Actions of the Example PDA

p

X

1

Z0

Mridul Aanjaneya Automata Theory 16/ 53



Actions of the Example PDA

Z0

f

Mridul Aanjaneya Automata Theory 17/ 53



Instantaneous Descriptions

• We can formalize the pictures just seen with an instantaneous
description (ID).

• An ID is a triple (q,w,α), where:
1 q is the current state.
2 w is the remaining input.
3 α is the stack contents, top at the left.

Mridul Aanjaneya Automata Theory 18/ 53



The “Goes-To” Relation

• To say that ID I can becomes ID J in one move of the PDA,
we can write I ` J.

• Formally, (q,aw,Xα) ` (p,w,βα) for any w and α, if δ(q,a,X)
contains (p,β).

• Extend ` to `∗, meaning zero or more moves, by:

Basis: I `∗ I.
Induction: If I `∗ J and J ` K, then I `∗ K.

Mridul Aanjaneya Automata Theory 19/ 53



Example: Goes-To

• Using the previous example PDA, we can describe the
sequence of moves by

(q, 000111,Z0) ` (q, 00111,XZ0) ` (q, 0111,XXZ0)

` (q, 111,XXXZ0) ` (p, 11,XXZ0)

` (p, 1,XZ0) ` (p, ε,Z0)

` (f , ε,Z0)

• Thus, (q,000111,Z0) `∗ (f,ε,Z0).

Mridul Aanjaneya Automata Theory 20/ 53



Example: Goes-To

• Using the previous example PDA, we can describe the
sequence of moves by

(q, 000111,Z0) ` (q, 00111,XZ0) ` (q, 0111,XXZ0)

` (q, 111,XXXZ0) ` (p, 11,XXZ0)

` (p, 1,XZ0) ` (p, ε,Z0)

` (f , ε,Z0)

• Thus, (q,000111,Z0) `∗ (f,ε,Z0).

Question

What would happen on the input 0001111?

Mridul Aanjaneya Automata Theory 21/ 53



Answer

(q, 0001111,Z0) ` (q, 001111,XZ0) ` (q, 01111,XXZ0)

` (q, 1111,XXXZ0) ` (p, 111,XXZ0)

` (p, 11,XZ0) ` (p, 1,Z0)

` (f , 1,Z0)

• Note: The last action is legal because a PDA can use ε input
even if input remains.

• The last ID has no move.

• 0001111 is not accepted, because the input is not completely
consumed.

Mridul Aanjaneya Automata Theory 22/ 53



Aside: FA and PDA Notations

• We represented moves of a FA by an extended δ, which did
not mention the input yet to be read.

• We could have chosen a similar notation for PDA’s, where the
FA state is replaced by a state-stack combination.

Mridul Aanjaneya Automata Theory 23/ 53



FA and PDA Notations

• Similarly, we could have chosen a FA notation with ID’s.

Just drop the stack notation.

• Why the difference?

• FA tend to models thinks like protocols with infinitely long
inputs.

• PDA model parsers, which are given a fixed program to
process.

Mridul Aanjaneya Automata Theory 24/ 53



Language of a PDA

• The common way to define the language of a PDA is by final
state.

• If P is a PDA, then L(P) is the set of strings w such that
(q0,w,Z0) `∗ (f,ε,α) for final state f and any α.

Mridul Aanjaneya Automata Theory 25/ 53



Language of a PDA

• Another language defined by the same PDA is by empty stack.

• If P is a PDA, then N(P) is the set of strings w such that
(q0,w,Z0) `∗ (q,ε,ε) for any state q.

Mridul Aanjaneya Automata Theory 26/ 53



Equivalence of Language Definitions

1 If L = L(P), then there is another PDA P’ such that

L = N(P’)

2 If L = N(P), then there is another PDA P” such that

L = L(P”).

Mridul Aanjaneya Automata Theory 27/ 53



Proof: L(P) → N(P’) Intuition

• P’ will simulate P.

• If P accepts, P’ will empty its stack.

• P’ has to avoid accidentally emptying its stack, so it uses a
special bottom marker to catch the case where P empties its
stack without accepting.

Mridul Aanjaneya Automata Theory 28/ 53



Proof: L(P) → N(P’)

• P’ has all the states, symbols, and moves of P, plus:
1 Stack symbol X0, used to guard the stack bottom against

accidental emptying.
2 New start state s and erase state e.
3 δ(s,ε,X0) = {(q0,Z0X0)}. Get P started.
4 δ(f,ε,X) = δ(e,ε,X) = {(e,ε)} for any final state f of P and

any stack symbol X.

Mridul Aanjaneya Automata Theory 29/ 53



Proof: N(P) → L(P”) Intuition

• P” simulates P.

• P” has a special bottom-marker to catch the situation where
P empties its stack.

• If so, P” accepts.

Mridul Aanjaneya Automata Theory 30/ 53



Proof: N(P) → L(P”)

• P” has all the states, symbols, and moves of P, plus:
1 Stack symbol X0, used to guard the stack bottom.
2 New start state s and final state f.
3 δ(s,ε,X0) = {(q0,Z0X0)}. Get P started.
4 δ(q,ε,X0) = {(f,ε)} for any state q of P.

Mridul Aanjaneya Automata Theory 31/ 53



Deterministic PDA’s

• To be deterministic, there must be at most one choice of
move for any state q, input symbol a, and stack symbol X.

• In addition, there must not be a choice between using input ε
or real input.

• Formally, δ(q,a,X) and δ(q,ε,X) cannot both be nonempty.

Mridul Aanjaneya Automata Theory 32/ 53



Equivalence of PDA’s and CFG’s: Overview

• When we talked about closure properties of regular languages,
it was useful to be able to jump between RE and DFA
representations.

• Similarly, CFG’s and PDA’s are both useful to deal with
properties of CFL’s.

Mridul Aanjaneya Automata Theory 33/ 53



Equivalence of PDA’s and CFG’s: Overview

• Also, PDA’s, being algorithmic, are often easier to use when
arguing that a language is a CFL.

• Example: It is easy to see how a PDA can recognize balanced
parentheses, not so easy as a grammar.

• But all depends on knowing that CFG’s and PDA’s both
define the CFL’s.

Mridul Aanjaneya Automata Theory 34/ 53



Converting a CFG to a PDA

• Let L = L(G).

• Construct PDA P such that N(P) = L.

• P has:

One state q.
Input symbols = terminals of G.
Stack symbols = all symbols of G.
Start symbol = start symbol of G.

Mridul Aanjaneya Automata Theory 35/ 53



Intuition about P

• Given input w, P will step through a leftmost derivation of w
from the start symbol S.

• Since P can’t know what this derivation is, or even what the
end of w is, it uses nondeterminism to guess the production to
use at each step.

Mridul Aanjaneya Automata Theory 36/ 53



Intuition about P

• At each step, P represents some left-sentential form (step of a
leftmost derivation).

• If the stack of P is α, and P has so far consumed x from its
input, then P represents left-sentential form xα.

• At empty stack, the input consumed is a string in L(G).

Mridul Aanjaneya Automata Theory 37/ 53



Transition Function of P

1 δ(q,a,a) = (q,ε). (Type 1 rules)

This step does not change the LSF represented, but moves
responsibility for a from the stack to the consumed input.

2 If A → α is a production of G, then δ(q,ε,A) contains (q,α).
(Type 2 rules)

Guess a production for A, and represent the next LSF in the
derivation.

Mridul Aanjaneya Automata Theory 38/ 53



Proof that N(P) = L(G)

• We need to show that (q,wx,S) `∗ (q,x,α) for any x if and
only if S ⇒∗

lm wα.

• Part 1: only if is an induction on the number of steps made
by P.

• Basis: 0 steps.

Then α = S, w = ε, and S ⇒∗
lm S is surely true.

Mridul Aanjaneya Automata Theory 39/ 53



Induction for Part 1

• Consider n moves of P: (q,wx,S) `∗ (q,x,α) and assume the
IH for sequences of n-1 moves.

• There are two cases, depending on whether the last move uses
a Type 1 or Type 2 rule.

Mridul Aanjaneya Automata Theory 40/ 53



Use of a Type 1 Rule

• The move sequence must be of the form (q,yax,S) `∗
(q,ax,aα) ` (q,x,α), where ya = w.

• By the IH applied to the first n-1 steps, S ⇒∗
lm yaα.

• But ya = w, so S ⇒∗
lm wα.

Mridul Aanjaneya Automata Theory 41/ 53



Use of a Type 2 Rule

• The move sequence must be of the form (q,wx,S) `∗ (q,x,Aβ)
` (q,x,γβ), where A → γ is a production and α = γβ.

• By the IH applied to the first n-1 steps, S ⇒∗
lm wAβ.

• Thus, S ⇒∗
lm wγβ = wα.

Mridul Aanjaneya Automata Theory 42/ 53



Proof of Part 2 (“if”)

• We also must prove that if S ⇒∗
lm wα, then (q,wx,S) `∗

(q,x,α) for any x.

• Induction on number of steps in the leftmost derivation.

• Ideas are similar.

Mridul Aanjaneya Automata Theory 43/ 53



Proof - Completion

• We now have (q,wx,S) `∗ (q,x,α) for any x if and only if S
⇒∗

lm wα.

• In particular, let x = α = ε.

• Then (q,w,S) `∗ (q,ε,ε) if and only if S ⇒∗
lm w.

• That is, w ∈ N(P) if and only if w ∈ L(G).

Mridul Aanjaneya Automata Theory 44/ 53



From a PDA to a CFG

• Now assume L=N(P).

• We’ll construct a CFG G such that L = L(G).

• Intuition: G will have variables generating exactly the inputs
that cause P to have the net effect of popping a stack symbol
X while going from state p to state q.

P never gets below this X while doing so.

Mridul Aanjaneya Automata Theory 45/ 53



Variables of G

• G’s variables are of the form [pXq].

• This variable generates all and only the strings w such that

(p,w ,X ) `∗ (q, ε, ε)

• Also a start symbol S we’ll talk about later.

Mridul Aanjaneya Automata Theory 46/ 53



Productions of G

• Each production for [pXq] comes from a move of P in state p
with stack symbol X.

• Simplest case: δ(p,a,X) contains (q,ε).

• Then the production is [pXq] → a.

Note that a can be an input symbol or ε.

• Here, [pXq] generates a, because reading a is one way to pop
X and go from p to q.

Mridul Aanjaneya Automata Theory 47/ 53



Productions of G

• Next simplest case: δ(p,a,X) contains (r,Y) for some state r
and symbol Y.

• G has production [pXq] → a[rYq].

We can erase X and go from p to q by reading a (entering
state r and replacing the X by Y) and then reading some w
that gets P from r to q while erasing the Y.

• Note: [pXq] ⇒∗ aw whenever [rYq] ⇒∗ w.

Mridul Aanjaneya Automata Theory 48/ 53



Productions of G

• Third simplest case: δ(p,a,X) contains (r,YZ) for some state
r and symbols Y and Z.

• Now, P has replaced X by YZ.

• To have the net effect of erasing X, P must erase Y, going
from state r to some state s, and then erase Z, going from s
to q.

Mridul Aanjaneya Automata Theory 49/ 53



Action of P

p

a wx

X

wx

Y
Z

Z

x

r s q

Mridul Aanjaneya Automata Theory 50/ 53



Productions of G

• Since we do not know state s, we must generate a family of
productions:

[pXq]→ a[rYs][sZq]

• It follows [pXq]⇒∗ awx whenever [rYs]⇒∗ w and [sZq]⇒∗ x.

Mridul Aanjaneya Automata Theory 51/ 53



Productions of G: General Case

• Suppose δ(p,a,X) contains (r,Y1,. . .,Yk) for some state r and
k ≥ 3.

• Generate family of productions

[pXq]→ a[rY1s1][s1Y2s2] . . . [sk−2Yk−1sk−1][sk−1Ykq]

Mridul Aanjaneya Automata Theory 52/ 53



Completion of the Construction

• We can prove that (q0,w,Z0) `∗ (p,ε,ε) iff [q0Z0p] ⇒∗ w.

Proof is two easy inductions. Left as exercises.

• But state p can be anything.

• Thus, add to G another variable S, the start symbol, and add
productions S → [q0Z0p] for each state p.

Mridul Aanjaneya Automata Theory 53/ 53


