# Normal Forms and Pushdown Automata

### Mridul Aanjaneya



July 19, 2012

- No class on Thursday (07/26).
- Practice problems.
- Office hours on Thursday (07/26) (1PM 4PM) and (5PM 8PM) (Gates 104).
- Office hours on Monday (07/30) (6PM 9PM) (Gates 104).

- We can almost avoid using productions of the form  $A \rightarrow \varepsilon$  (called  $\varepsilon$ -productions).
  - The problem is that  $\varepsilon$  cannot be in the language of any grammar that has no  $\varepsilon$ -productions.

#### Theorem

If L is a CFL, then L  $-\left\{\varepsilon\right\}$  has a CFG with no  $\varepsilon\text{-productions}.$ 

- To eliminate ε-productions, we first need to discover the nullable symbols = variables A such that A ⇒\* ε.
- **Basis:** If there is a production  $A \rightarrow \varepsilon$ , then A is nullable.
- Induction: If there is a production  $A \rightarrow \alpha$ , and all symbols of  $\alpha$  are nullable, then A is nullable.

### $S \rightarrow AB$ , $A \rightarrow aA \mid \varepsilon$ , $B \rightarrow bB \mid A$

- **Basis:** A is nullable because of  $A \rightarrow \varepsilon$ .
- Induction: B is nullable because of  $B \rightarrow A$ .
- Then, S is nullable because of  $S \rightarrow AB$ .

- Proof is very much like that for the algorithm for testing variables that derive terminal strings.
- Left to the imagination!

• Key idea: turn each production

 $\mathsf{A} \to \mathsf{X}_1 \ldots \mathsf{X}_n$ 

into a family of productions.

- For each subset of nullable X's, there is one production with those eliminated from the right side in advance.
  - Except, if all X's are nullable, do not make a production with  $\varepsilon$  as the right hand side.

### $S \rightarrow ABC$ , $A \rightarrow aA \mid \varepsilon$ , $B \rightarrow bB \mid \varepsilon$ , $C \rightarrow \varepsilon$

- A, B, C and S are all nullable.
- New grammar:

$$\begin{split} \mathsf{S} &\to \mathsf{ABC} \mid \mathsf{AB} \mid \mathsf{AC} \mid \mathsf{BC} \mid \mathsf{A} \mid \mathsf{B} \mid \mathscr{L} \\ & \mathsf{A} \to \mathsf{aA} \mid \mathsf{a} \\ & \mathsf{B} \to \mathsf{bB} \mid \mathsf{b} \end{split}$$

• Note: C is now useless, eliminate its productions.

- Prove that for all variables A:
  - 1 If  $w \neq \varepsilon$  and  $A \Rightarrow_{old}^* w$ , then  $A \Rightarrow_{new}^* w$ . 2 If  $A \Rightarrow_{new}^* w$ , then  $w \neq \varepsilon$  and  $A \Rightarrow_{old}^* w$ .
- Then, letting A be the start symbol proves that  $L(new) = L(old) \{\varepsilon\}$ .
- (1) is an induction on the number of steps by which A derives w in the old grammar.

- If the old derivation is one step, then  $\mathsf{A} \to \mathsf{w}$  must be a production.
- Since  $\mathbf{w} \neq \varepsilon$ , this production also appears in the new grammar.
- Thus,  $A \Rightarrow_{new} w$ .

- Let A ⇒<sup>\*</sup><sub>old</sub> w be an n-step derivation, and assume the IH for derivations of less than n steps.
- Let the first step be  $A \Rightarrow_{old} X_1 \dots X_n$ .
- Then w can be broken into  $w = w_1 \dots w_n$ , where  $X_i \Rightarrow_{old}^* w_i$ , for all i, in fewer than n steps.

- By the **IH**, if  $w_i \neq \varepsilon$ , then  $X_i \Rightarrow_{new}^* w_i$ .
- Also, the new grammar has a production with A on the left, and just those X<sub>i</sub>'s on the right such that w<sub>i</sub> ≠ ε.

• Note: They all cannot be  $\varepsilon$ , because  $w \neq \varepsilon$ .

 Follow a use of this production by the derivations X<sub>i</sub> ⇒<sup>\*</sup><sub>new</sub> w<sub>i</sub> to show that A derives w in the new grammar.

- We also need to show part (2) if w is derived from A in the new grammar, then it is also derived in the old.
- Induction on number of steps in the derivation.
- Left as exercise.

- A unit production is one whose right hand side consists of exactly one variable.
- These productions can be eliminated.
- Key idea: If  $A \Rightarrow^* B$  by a series of unit productions, and  $B \rightarrow \alpha$  is a non-unit production, then add the production  $A \rightarrow \alpha$ .
- Then drop all unit productions.

- Find all pairs (A,B) such that A ⇒\* B by a sequence of unit productions only.
- Basis: Surely (A,A).
- Induction: If we have found (A,B), and  $B \to C$  is a unit production, then add (A,C).

- By induction on the order in which pairs (A,B) are found, we can show A ⇒<sup>\*</sup> B by unit productions.
- Conversely, by induction on the number of steps in the derivation by unit productions of A ⇒\* B, we can show that the pair (A,B) is discovered.
- Left as exercises.

- Basic idea: there is a leftmost derivation  $A \Rightarrow_{Im}^{*} w$  in the new grammar if and only if there is such a derivation in the old.
- A sequence of unit productions and a non-unit production is collapsed into a single production of the new grammar.

- A symbol is useful if it appears in some derivation of some terminal string from the start symbol.
- Otherwise it is useless. Eliminate all useless symbols by:
  - Eliminating symbols that derive no terminal string.
  - eliminating unreachable symbols.

#### Theorem

- If L is a CFL, then there is a CFG for L  $\{\varepsilon\}$  that has:
  - No useless symbols.
  - No ε-productions.
  - No unit productions.
  - i.e., every right side is either a single terminal or has length  $\geq$  2.

- **Proof:** Start with a CFG for L.
- Perform the following steps in order:
  - Eliminate  $\varepsilon$ -productions.
  - eliminate unit productions.
  - Iliminate variables that derive no terminal string.
  - Iliminate variables not reachable from the start symbol.
- Note: (1) can create unit productions or useless variables, so it must come first.

#### Definition

A CFG is said to be in Chomsky Normal Form if every production is of one of these two forms:

- $A \rightarrow BC$  (right side is two variables).
- $A \rightarrow a$  (right side is a single terminal).

#### Theorem

If L is a CFL, then L -  $\{\varepsilon\}$  has a CFG in CNF.

- **Step 1:** Clean the grammar, so every production right side is either a single terminal or of length at least 2.
- Step 2: For each right side ≠ a single terminal, make the right side all variables.
  - Solution
    For each terminal a create a new variable A<sub>a</sub> and production
    A<sub>a</sub>  $\rightarrow$  a.
  - 2 Replace a by  $A_a$  in right sides of length > 2.

- Consider production  $A \rightarrow BcDe$ .
- We need variables  $A_c$  and  $A_e$  with productions  $A_c \rightarrow c$  and  $A_e \rightarrow e$ .
  - Note: you create at most one variable for each terminal, and use it everywhere it is needed.
- Replace  $A \rightarrow BcDe$  by  $A \rightarrow BA_cDA_e$ .

- **Step 3:** Break right sides longer than 2 into a chain of productions with right sides of two variables.
- A → BCDE is replaced by A → BF, F → CG and G → DE.
   Note: F and G must be used nowhere else.
- In the new grammar,  $A \Rightarrow BF \Rightarrow BCG \Rightarrow BCDE$ .
- More importantly: Once we choose to replace A by BF, we must continue to BCG and BCDE.
  - Because F and G have only one production.

- We must prove that Steps 2 and 3 produce new grammars whose languages are the same as the previous grammar.
- Proofs are of a familiar type and involve inductions on the lengths of derivations.
  - Left as exercises.

- A PDA is an automaton equivalent to the CFG in language-defining power.
- Only the nonterministic PDA's define all possible CFL's.
- But the deterministic version models parsers.
  - Most programming languages have deterministic PDA's.

- Think of an ε-NFA with the additional power that it can manipulate a stack.
- Its moves are determined by:
  - The current state (of its NFA).
  - 2 The current input symbol (or  $\varepsilon$ ), and
  - The current symbol on top of its stack.

- Being nondeterministic, the PDA can have a choice of next moves.
- In each choice, the PDA can:
  - Change state, and also
  - Replace the top symbol on the stack by a sequence of zero or more symbols.
    - Zero symbols = pop.
    - Many symbols = sequence of pushes.

- A PDA is described by:
  - A finite set of states (Q, typically).
  - On input alphabet (Σ, typically).
  - A stack alphabet (F, typically).
  - A transition function ( $\delta$ , typically).
  - **(5)** A start state  $(q_0, in Q, typically)$ .
  - **o** A start symbol ( $Z_0$ , in  $\Gamma$ , typically).
  - **(**) A set of final states ( $F \subseteq Q$ , typically).

- a, b,... are input symbols.
  - But sometimes we allow  $\varepsilon$  as a possible value.
- ..., X, Y, Z are stack symbols.
- ..., w, x, y, z are strings of input symbols.
- $\alpha$ ,  $\beta$ ,... are strings of stack symbols.

- Takes three arguments:
  - A state in Q.
  - **2** An input which is either a symbol in  $\Sigma$  or  $\varepsilon$ .
  - A stack symbol in Γ.
- $\delta(q,a,Z)$  is a set of zero or more actions of the form  $(p,\alpha)$ .
  - **p** is a state,  $\alpha$  is a string of stack symbols.

- If δ(q,a,Z) contains (p,α) among its actions, then one thing the PDA can do in state q, with a at the front of the input, and Z on top of the stack is:
  - Change the state to p.
  - 2 Remove a from the front of the input (but a may be  $\varepsilon$ ).
  - Solution Replace Z on the top of the stack by  $\alpha$ .

- Design a PDA to accept  $\{0^n1^n \mid n \ge 1\}$ .
- The states:
  - q = start state. We are in state q if we have seen only 0's so far.
  - p = we've seen at least one 1 and may now proceed only if the inputs are 1's.
  - f = final state; accept.

- The stack symbols:
  - $Z_0$  = start symbol. Also marks the bottom of the stack, so we know we have counted the same number of 1's as 0's.
  - X = marker, used to count the number of 0's seen on the input.

### • The transitions:

- $\delta(q,0,Z_0) = \{(q,XZ_0)\}.$
- δ(q,0,X) = {(q,XX)}. These two rules cause one X to be pushed onto the stack for each 0 read from the input.
- δ(q,1,X) = {(p,ε)}. When we see a 1, go to state p and pop one X.
- $\delta(\mathbf{p},\mathbf{1},\mathbf{X}) = \{(\mathbf{p},\varepsilon)\}$ . Pop one X per 1.
- $\delta(\mathbf{p},\varepsilon,\mathbf{Z}_0) = \{(\mathbf{f},\mathbf{Z}_0)\}$ . Accept at bottom.









Mridul Aanjaneya





