Normal Forms and Pushdown Automata

Mridul Aanjaneya

July 19, 2012

Midterm Review

- No class on Thursday (07/26).
- Practice problems.
- Office hours on Thursday (07/26) (1PM - 4PM) and (5PM 8PM) (Gates 104).
- Office hours on Monday (07/30) (6PM - 9PM) (Gates 104).

Epsilon Productions

- We can almost avoid using productions of the form $A \rightarrow \varepsilon$ (called ε-productions).
- The problem is that ε cannot be in the language of any grammar that has no ε-productions.

Theorem

If L is a CFL, then $L-\{\varepsilon\}$ has a CFG with no ε-productions.

Nullable Symbols

- To eliminate ε-productions, we first need to discover the nullable symbols $=$ variables A such that $A \Rightarrow^{*} \varepsilon$.
- Basis: If there is a production $A \rightarrow \varepsilon$, then A is nullable.
- Induction: If there is a production $\mathrm{A} \rightarrow \alpha$, and all symbols of α are nullable, then A is nullable.

Example: Nullable Symbols

$$
\mathrm{S} \rightarrow \mathrm{AB}, \mathrm{~A} \rightarrow \mathrm{aA}|\varepsilon, \mathrm{~B} \rightarrow \mathrm{bB}| \mathrm{A}
$$

- Basis: A is nullable because of $\mathrm{A} \rightarrow \varepsilon$.
- Induction: B is nullable because of $B \rightarrow A$.
- Then, S is nullable because of $S \rightarrow A B$.

Proof of Algorithm: Nullable Symbols

- Proof is very much like that for the algorithm for testing variables that derive terminal strings.
- Left to the imagination!

Eliminating ε-productions

- Key idea: turn each production

$$
\mathrm{A} \rightarrow \mathrm{X}_{1} \ldots \mathrm{X}_{n}
$$

into a family of productions.

- For each subset of nullable X's, there is one production with those eliminated from the right side in advance.
- Except, if all X's are nullable, do not make a production with ε as the right hand side.

Example: Eliminating ε-productions

$$
\mathrm{S} \rightarrow \mathrm{ABC}, \mathrm{~A} \rightarrow \mathrm{aA}|\varepsilon, \mathrm{~B} \rightarrow \mathrm{bB}| \varepsilon, \mathrm{C} \rightarrow \varepsilon
$$

- A, B, C and S are all nullable.
- New grammar:

$$
\begin{gathered}
S \rightarrow A B C|A B| A C|B C| A|B| C \\
A \rightarrow a A \mid a \\
B \rightarrow b B \mid b
\end{gathered}
$$

- Note: C is now useless, eliminate its productions.

Why It Works

- Prove that for all variables A :
(1) If $w \neq \varepsilon$ and $A \Rightarrow{ }_{\text {old }}^{*} w$, then $A \Rightarrow{ }_{\text {new }}^{*} w$.
(2) If $A \Rightarrow{ }_{\text {new }}^{*} w$, then $w \neq \varepsilon$ and $A \Rightarrow$ old w.
- Then, letting A be the start symbol proves that $L($ new $)=$ L (old) $-\{\varepsilon\}$.
- (1) is an induction on the number of steps by which A derives w in the old grammar.

Proof of 1 - Basis

- If the old derivation is one step, then $A \rightarrow w$ must be a production.
- Since $w \neq \varepsilon$, this production also appears in the new grammar.
- Thus, $\mathrm{A} \Rightarrow_{\text {new }}$ w.

Proof of 1 - Induction

- Let $\mathrm{A} \Rightarrow{ }_{\text {old }}^{*}$ w be an n-step derivation, and assume the IH for derivations of less than n steps.
- Let the first step be $A \Rightarrow_{\text {old }} X_{1} \ldots X_{n}$.
- Then w can be broken into $\mathrm{w}=\mathrm{w}_{1} \ldots \mathrm{w}_{n}$, where $\mathrm{X}_{i} \Rightarrow_{\text {old }}^{*} \mathrm{w}_{i}$, for all i , in fewer than n steps.

Proof of 1 - Induction

- By the IH, if $\mathrm{w}_{i} \neq \varepsilon$, then $\mathrm{X}_{i} \Rightarrow_{\text {new }}^{*} \mathrm{w}_{i}$.
- Also, the new grammar has a production with A on the left, and just those X_{i} 's on the right such that $w_{i} \neq \varepsilon$.
- Note: They all cannot be ε, because $w \neq \varepsilon$.
- Follow a use of this production by the derivations $X_{i} \Rightarrow{ }_{\text {new }}^{*} w_{i}$ to show that A derives w in the new grammar.

Proof of Converse

- We also need to show part (2) - if w is derived from A in the new grammar, then it is also derived in the old.
- Induction on number of steps in the derivation.
- Left as exercise.

Unit Productions

- A unit production is one whose right hand side consists of exactly one variable.
- These productions can be eliminated.
- Key idea: If $A \Rightarrow^{*} B$ by a series of unit productions, and $B \rightarrow$ α is a non-unit production, then add the production $\mathrm{A} \rightarrow \alpha$.
- Then drop all unit productions.

Unit Productions

- Find all pairs (A, B) such that $A \Rightarrow^{*} B$ by a sequence of unit productions only.
- Basis: Surely (A, A).
- Induction: If we have found (A, B), and $B \rightarrow C$ is a unit production, then add (A,C).

Proof that we find exactly the right pairs

- By induction on the order in which pairs (A, B) are found, we can show $\mathrm{A} \Rightarrow^{*} \mathrm{~B}$ by unit productions.
- Conversely, by induction on the number of steps in the derivation by unit productions of $A \Rightarrow^{*} B$, we can show that the pair (A, B) is discovered.
- Left as exercises.

Proof: Unit Production Elimination Algorithm

- Basic idea: there is a leftmost derivation $\mathrm{A} \Rightarrow{ }_{1 \mathrm{~m}}^{*} \mathrm{w}$ in the new grammar if and only if there is such a derivation in the old.
- A sequence of unit productions and a non-unit production is collapsed into a single production of the new grammar.

Recap: Useless Symbols

- A symbol is useful if it appears in some derivation of some terminal string from the start symbol.
- Otherwise it is useless. Eliminate all useless symbols by:
(1) Eliminating symbols that derive no terminal string.
(2) Eliminating unreachable symbols.

Cleaning Up a Grammar

Theorem

If L is a CFL, then there is a CFG for $L-\{\varepsilon\}$ that has:

- No useless symbols.
- No ε-productions.
- No unit productions.
- i.e., every right side is either a single terminal or has length ≥ 2.

Cleaning Up

- Proof: Start with a CFG for L.
- Perform the following steps in order:
(1) Eliminate ε-productions.
(2) Eliminate unit productions.
(3) Eliminate variables that derive no terminal string.
(9) Eliminate variables not reachable from the start symbol.
- Note: (1) can create unit productions or useless variables, so it must come first.

Chomsky Normal Form

Definition

A CFG is said to be in Chomsky Normal Form if every production is of one of these two forms:

- $A \rightarrow B C$ (right side is two variables).
- $A \rightarrow$ a (right side is a single terminal).

Theorem

If L is a CFL, then $L-\{\varepsilon\}$ has a CFG in CNF.

Proof of CNF Theorem

- Step 1: Clean the grammar, so every production right side is either a single terminal or of length at least 2.
- Step 2: For each right side \neq a single terminal, make the right side all variables.
(1) For each terminal a create a new variable A_{a} and production $\mathrm{A}_{\mathrm{a}} \rightarrow \mathrm{a}$.
(2) Replace a by A_{a} in right sides of length >2.

Example: Step 2

- Consider production $\mathrm{A} \rightarrow \mathrm{BcDe}$.
- We need variables A_{c} and A_{e} with productions $A_{c} \rightarrow c$ and $\mathrm{A}_{\mathrm{e}} \rightarrow \mathrm{e}$.
- Note: you create at most one variable for each terminal, and use it everywhere it is needed.
- Replace $\mathrm{A} \rightarrow$ BcDe by $\mathrm{A} \rightarrow \mathrm{BA}_{c} \mathrm{DA}_{e}$.

Proof of CNF Theorem

- Step 3: Break right sides longer than 2 into a chain of productions with right sides of two variables.
- $\mathrm{A} \rightarrow \mathrm{BCDE}$ is replaced by $\mathrm{A} \rightarrow \mathrm{BF}, \mathrm{F} \rightarrow \mathrm{CG}$ and $\mathrm{G} \rightarrow \mathrm{DE}$.
- Note: F and G must be used nowhere else.
- In the new grammar, $A \Rightarrow B F \Rightarrow B C G \Rightarrow B C D E$.
- More importantly: Once we choose to replace A by BF, we must continue to BCG and BCDE.
- Because F and G have only one production.

Proof of CNF Theorem (Formally)

- We must prove that Steps 2 and 3 produce new grammars whose languages are the same as the previous grammar.
- Proofs are of a familiar type and involve inductions on the lengths of derivations.
- Left as exercises.

Pushdown Automata

- A PDA is an automaton equivalent to the CFG in language-defining power.
- Only the nonterministic PDA's define all possible CFL's.
- But the deterministic version models parsers.
- Most programming languages have deterministic PDA's.

Intuition: PDA

- Think of an ε-NFA with the additional power that it can manipulate a stack.
- Its moves are determined by:
(1) The current state (of its NFA).
(2) The current input symbol (or ε), and
(3) The current symbol on top of its stack.

Intuition: PDA

- Being nondeterministic, the PDA can have a choice of next moves.
- In each choice, the PDA can:
(1) Change state, and also
(2) Replace the top symbol on the stack by a sequence of zero or more symbols.
- Zero symbols = pop.
- Many symbols = sequence of pushes.

PDA Formalism

- A PDA is described by:
(1) A finite set of states (Q, typically).
(2) An input alphabet (Σ, typically).
(3) A stack alphabet (Γ, typically).
(9) A transition function (δ, typically).
(3) A start state (q_{0}, in Q, typically).
(0) A start symbol (Z_{0}, in Γ, typically).
(0) A set of final states ($F \subseteq Q$, typically).

Conventions

- a, b, \ldots are input symbols.
- But sometimes we allow ε as a possible value.
- ..., X, Y, Z are stack symbols.
- ..., w, x, y, z are strings of input symbols.
- α, β, \ldots are strings of stack symbols.

The Transition Function

- Takes three arguments:
(1) A state in Q.
(2) An input which is either a symbol in Σ or ε.
(3) A stack symbol in Γ.
- $\delta(\mathrm{q}, \mathrm{a}, \mathrm{Z})$ is a set of zero or more actions of the form (p, α).
- p is a state, α is a string of stack symbols.

Actions of the PDA

- If $\delta(\mathrm{q}, \mathrm{a}, \mathrm{Z})$ contains (p, α) among its actions, then one thing the PDA can do in state q, with a at the front of the input, and Z on top of the stack is:
(1) Change the state to p.
(2) Remove a from the front of the input (but a may be ε).
(3) Replace Z on the top of the stack by α.

Example: PDA

- Design a PDA to accept $\left\{0^{n} 1^{n} \mid n \geq 1\right\}$.
- The states:
- $\mathrm{q}=$ start state. We are in state q if we have seen only 0 's so far.
- $p=$ we've seen at least one 1 and may now proceed only if the inputs are 1's.
- $\mathrm{f}=$ final state; accept.

Example: PDA

- The stack symbols:
- $Z_{0}=$ start symbol. Also marks the bottom of the stack, so we know we have counted the same number of 1's as 0's.
- $X=$ marker, used to count the number of 0 's seen on the input.

Example: PDA

- The transitions:
- $\delta\left(\mathrm{q}, 0, \mathrm{Z}_{0}\right)=\left\{\left(\mathrm{q}, \mathrm{XZ} \mathrm{Z}_{0}\right)\right\}$.
- $\delta(\mathrm{q}, 0, \mathrm{X})=\{(\mathrm{q}, \mathrm{XX})\}$. These two rules cause one X to be pushed onto the stack for each 0 read from the input.
- $\delta(\mathrm{q}, 1, \mathrm{X})=\{(\mathrm{p}, \varepsilon)\}$. When we see a 1 , go to state p and pop one X .
- $\delta(p, 1, X)=\{(p, \varepsilon)\}$. Pop one X per 1 .
- $\delta\left(\mathrm{p}, \varepsilon, \mathrm{Z}_{0}\right)=\left\{\left(\mathrm{f}, \mathrm{Z}_{0}\right)\right\}$. Accept at bottom.

Actions of the Example PDA

