
Ambiguous Grammars and Compactification

Mridul Aanjaneya

Stanford University

July 17, 2012

Mridul Aanjaneya Automata Theory 1/ 44

Midterm Review

• Mathematical Induction and Pigeonhole Principle

• Finite Automata (DFA’s, NFA’s, ε-NFA’s)

• Equivalence of DFA’s, NFA’s and ε-NFA’s

• Regular Languages and Closure Properties

Union, Concatenation, Kleene Closure, Intersection, Difference,
Complement, Reversal, (Inverse) Homomorphisms

• Regular Expressions and Equivalence with Automata

• Pumping Lemma for DFA’s

• Efficient State Minimization for DFA’s

• Context-Free Languages and Parse Trees

Mridul Aanjaneya Automata Theory 2/ 44

Homework #1

Problem 1

Given 8 distinct natural numbers, none greater than 15, show that
at least three pairs of them have the same positive difference.

• The pairs need not be disjoint as sets.

• 8 distinct natural numbers ⇒ 28 pairs.

• 14 possible differences.

• The difference 14 can only be achieved by 1 pair ⇒ PHP!

• Common Mistakes:
1 Not mentioning PHP.

Mridul Aanjaneya Automata Theory 3/ 44

Homework #1

Problem 2

Prove that the number 111 . . . 11 (243 ones) is divisible by 243.

• Let αn denote the number 111 . . . 11 (3n ones).

• Proof by induction.

αn+1 = αn102·3
n

+ αn103
n

+ αn

• 102·3
n

and 103
n

leave remainder 1 modulo 3.

⇒ αn+1 ≡ 3 · αn(mod 3) ≡ 0(mod 3n+1)

• Common Mistakes:
1 Using divisibility of sum of digits modulo 3 without proof.
2 Not stating general claim implies n = 5.

Mridul Aanjaneya Automata Theory 4/ 44

Homework #1

Problem 3

Show that the language L consisting of runs of even numbers of 0’s
and runs of odd numbers of 1’s is regular.

A B C

1
0

1

0,1

0

B C D

0

1

0

0,1

A

0

1

1

• Common Mistakes:
1 Not having a reject state that loops on all inputs.
2 Inconsistent use of empty string.

Mridul Aanjaneya Automata Theory 5/ 44

Homework #1

Problem 4

Construct an NFA for the language L over {0,1} such that each
string has two 0’s separated by a number of positions that is a non-
zero multiple of 5.

A B C

0,1

D

EFGH

0 0,1 0,1

0,1

0,10,1

1

0

0,1

• Common Mistakes:
1 Looping back incorrectly.
2 Not enforcing that the first and last transitions are zeroes.

Mridul Aanjaneya Automata Theory 6/ 44

Homework #1

Problem 5

Define an NFA N2 from a given NFA N1 by reversing the final/non-
final states. Is L(N2) the complement of L(N1)?

A

• Common Mistakes:
1 Overcomplicated thoughts.
2 Proving its true!

Mridul Aanjaneya Automata Theory 7/ 44

Recap: Context-Free Grammars

• Terminals: symbols of the alphabet of the language being
defined.

• Variables (nonterminals): a finite set of other symbols, each
of which represents a language.

• Start symbol: the variable whose language is the one being
defined.

Mridul Aanjaneya Automata Theory 8/ 44

Example: Formal CFG

• Here is a formal CFG for {0n1n | n ≥ 1}.
• Terminals = {0,1}.
• Variables = {S}.
• Start symbol = S.

• Productions =
S → 01
S → 0S1

Mridul Aanjaneya Automata Theory 9/ 44

Recap: Leftmost Derivations

• Say wAα ⇒lm wβα if w is a string of terminals only and A →
β is a production.

• Also, α ⇒∗
lm β if α becomes β by a sequence of zero or more

⇒lm steps.

• Balanced parantheses grammar:

S → SS | (S) | ()

• S ⇒lm SS ⇒lm (S)S ⇒lm (())S ⇒lm (())()

• Thus, S ⇒∗
lm (())()

Mridul Aanjaneya Automata Theory 10/ 44

Recap: Rightmost Derivations

• Say αAw ⇒rm αβw if w is a string of terminals only and A →
β is a production.

• Also, α ⇒∗
rm β if α becomes β by a sequence of zero or more

⇒rm steps.

• Balanced parantheses grammar:

S → SS | (S) | ()

• S ⇒rm SS ⇒rm S() ⇒rm (S)() ⇒rm (())()

• Thus, S ⇒∗
rm (())()

Mridul Aanjaneya Automata Theory 11/ 44

Recap: Parse Trees

• Parse trees are trees labeled by symbols of a particular CFG.

• Leaves: labeled by a terminal or ε.

• Interior nodes: labeled by a variable.

Children are labeled by the right side of a production for the
parent.

• Root: must be labeled by the start symbol.

Mridul Aanjaneya Automata Theory 12/ 44

Example: Parse Tree

S → SS | (S) | ()

S

S

S

S

(

(

(

)

))

Mridul Aanjaneya Automata Theory 13/ 44

Recap: Ambiguous Grammars

• A CFG is ambiguous is there is a string in the language that is
the yield of two or more parse trees.

• Example: S → SS | (S) | ()

• Two parse trees for ()()()!

Mridul Aanjaneya Automata Theory 14/ 44

Ambiguous Grammars

• Ambiguity is a property of grammars not languages.

• For the balanced parentheses language, here is another CFG
which is unambiguous:

B → (RB | ε
R →) | (RR

• Note: R generates strings that have one more right
parentheses than left.

Mridul Aanjaneya Automata Theory 15/ 44

Unambiguous Grammars

B → (RB | ε R →) | (RR

• Construct a unique leftmost derivation for a given balanced
string of parentheses by scanning the string from left to right.

• If we need to expand B, then use B → (RB if the next symbol
is (and ε if at the end.

• If we need to expand R, use R →) if the next symbol is) and
(RR if it is (.

Mridul Aanjaneya Automata Theory 16/ 44

The Parsing Process

• (())()

B → (RB → ((RRB → (()RB → (())B → (())(RB

→ (())()B → (())()

Mridul Aanjaneya Automata Theory 17/ 44

LL(1) Grammars

• As an aside, a grammar such as

B → (RB | ε
R →) | (RR

where you can always figure out the production to use in a
leftmost derivation by scanning the given string left-to-right
and looking only at the next one symbol is called LL(1).

Leftmost derivation, left-to-right scan, one symbol of
lookahead.

• Most programming languages have LL(1) grammars.

• LL(1) grammars are never ambiguous.

Mridul Aanjaneya Automata Theory 18/ 44

Inherent Ambiguity

• It would be nice if for every ambiguous grammar, there was
some way to fix the ambiguity, as we did for the balanced
parentheses grammar.

• Unfortunately, certain CFL’s are inherently ambiguous,
meaning that every grammar for the language is ambiguous.

Mridul Aanjaneya Automata Theory 19/ 44

Example: Inherent Ambiguity

• The language L = {0i1j2k | i = j or j = k}
• Intuitively, at least some of the strings of the form 0n1n2n

must be generated by two different parse trees, one based on
checking the 0’s and 1’s, the other based on checking the 1’s
and 2’s.

Mridul Aanjaneya Automata Theory 20/ 44

One Possible Ambiguous Grammar

S → AB|CD
A → 0A1|01

B → 2B|2
C → 0C |0
D → 1D2|12

• A generates equal numbers 0’s and 1’s.

• B generates any number of 2’s.

• C generates any number of 0’s.

• D generates equal numbers 1’s and 2’s.

Mridul Aanjaneya Automata Theory 21/ 44

One Possible Ambiguous Grammar

S → AB|CD
A → 0A1|01

B → 2B|2
C → 0C |0
D → 1D2|12

• And there are two derivations of every string with equal
numbers of 0’s, 1’s and 2’s. e.g.:

S → AB → 01B → 012

S → CD → 0D → 012

Mridul Aanjaneya Automata Theory 22/ 44

Example #1

Problem

Show that the language of all palindromes over {0,1} is context-free.

Mridul Aanjaneya Automata Theory 23/ 44

Example #1

Problem

Show that the language of all palindromes over {0,1} is context-free.

P → ε | 0 | 1 | 0P0 | 1P1

Mridul Aanjaneya Automata Theory 24/ 44

Example #2

Problem

Give a context-free language for the regular expression 0∗1(0+1)∗.

Mridul Aanjaneya Automata Theory 25/ 44

Example #2

Problem

Give a context-free language for the regular expression 0∗1(0+1)∗.

S → A1B

A → 0A|ε
B → 0B|1B|ε

Mridul Aanjaneya Automata Theory 26/ 44

Variables that derive nothing

• Consider: S → AB, A → aA, B → AB

• Although A derives all strings of a’s, B derives no terminal
strings.

• Thus, S derives nothing, and the language is empty!

Mridul Aanjaneya Automata Theory 27/ 44

Testing if a variable derives a terminal string

• Basis: If there is a production A → w, where w has no
variables, then A derives a terminal string.

• Induction: If there is a production A → α, where α consists
only of terminals and variables known to derive a terminal
string, then A derives a terminal string.

Mridul Aanjaneya Automata Theory 28/ 44

Testing

• Eventually, we can find no more variables.

• An easy induction on the order in which variables are
discovered shows that each one truly derives a terminal string.

• Conversely, any variable that derives a terminal string will be
discovered by this algorithm.

Mridul Aanjaneya Automata Theory 29/ 44

Proof of Converse

• The proof is an induction on the height of the least-height
parse tree by which a variable A derives a terminal string.

• Basis: Height = 1. Tree looks like:

A

........a a1 n

• Then the basis of the algorithm tells us that A will be
discovered.

Mridul Aanjaneya Automata Theory 30/ 44

Induction for Converse

• Assume IH for parse trees of height < h, and suppose A
derives a terminal string via a parse tree of height h:

A

........
1 nX X

w1 wn

• By IH, those Xi ’s that are variables are discovered.

• Thus, A will also be discovered, because it has a right side of
terminals and/or discovered variables.

Mridul Aanjaneya Automata Theory 31/ 44

Algorithm to Eliminate Variables that Derive Nothing

1 Discover all variables that derive terminal strings.

2 For all other variables, remove all productions in which they
appear, either on the left or on the right.

Mridul Aanjaneya Automata Theory 32/ 44

Example: Eliminate Variables

S → AB | C, A → aA | a, B → bB, C → c

• Basis: A and c are identified because of A → a and C → c.

• Induction: S is identified because of S → C.

• Nothing else can be identified.

• Result:

S → C, A → aA | a, C → c

Mridul Aanjaneya Automata Theory 33/ 44

Unreachable Symbols

• Another way a terminal or a variable deserves to be eliminated
is if it cannot appear in any derivation from the start symbol.

• Basis: We can reach S (the start symbol).

• Induction: If we can reach A, and there is a production

A → α,

then we can reach all symbols of α.

Mridul Aanjaneya Automata Theory 34/ 44

Unreachable Symbols

• Easy inductions in both directions show that when we can
discover no more symbols, then we have all and only the
symbols that appear in derivations from S.

Left as exercises.

• Algorithm: Remove from the grammar all symbols not
discovered reachable from S and all productions that involve
these symbols.

Mridul Aanjaneya Automata Theory 35/ 44

Eliminating Useless Symbols

• A symbol is useful if it appears in some derivation of some
terminal string from the start symbol.

• Otherwise it is useless. Eliminate all useless symbols by:
1 Eliminating symbols that derive no terminal string.
2 Eliminating unreachable symbols.

Mridul Aanjaneya Automata Theory 36/ 44

Useless Symbols

S → AB, A → C, C → c, B → bB

• If we eliminated unreachable symbols first, we would find
everything is reachable.

• A, C and c would never get eliminated.

Mridul Aanjaneya Automata Theory 37/ 44

Why It Works

• After step (1), every symbol remaining derives some terminal
string.

• After step (2), the only symbols remaining are all derivable
from S.

• In addition, they still derive a terminal string, because such a
derivation can only involve symbols reachable from S.

Mridul Aanjaneya Automata Theory 38/ 44

Epsilon Productions

• We can almost avoid using productions of the form A → ε
(called ε-productions).

The problem is that ε cannot be in the language of any
grammar that has no ε-productions.

Theorem

If L is a CFL, then L − {ε} has a CFG with no ε-productions.

Mridul Aanjaneya Automata Theory 39/ 44

Nullable Symbols

• To eliminate ε-productions, we first need to discover the
nullable symbols = variables A such that A ⇒∗ ε.

• Basis: If there is a production A → ε, then A is nullable.

• Induction: If there is a production A → α, and all symbols of
α are nullable, then A is nullable.

Mridul Aanjaneya Automata Theory 40/ 44

Example: Nullable Symbols

S → AB, A → aA | ε, B → bB | A

• Basis: A is nullable because of A → ε.

• Induction: B is nullable because of B → A.

• Then, S is nullable because of S → AB.

Mridul Aanjaneya Automata Theory 41/ 44

Proof of Algorithm: Nullable Symbols

• Proof is very much like that for the algorithm for testing
variables that derive terminal strings.

• Left to the imagination!

Mridul Aanjaneya Automata Theory 42/ 44

Eliminating ε-productions

• Key idea: turn each production

A → X1. . .Xn

into a family of productions.

• For each subset of nullable X’s, there is one production with
those eliminated from the right side in advance.

Except, if all X’s are nullable, do not make a production with ε
as the right hand side.

Mridul Aanjaneya Automata Theory 43/ 44

Example: Eliminating ε-productions

S → ABC, A → aA | ε, B → bB | ε, C → ε

• A, B, C and S are all nullable.

• New grammar:

S →���ABC | AB |��AC |��BC | A | B | �C
A → aA | a
B → bB | b

• Note: C is now useless, eliminate its productions.

Mridul Aanjaneya Automata Theory 44/ 44

