Context-Free Languages and Parse Trees

Mridul Aanjaneya

July 12, 2012

Context-Free Grammars

- A context-free grammar is a notation for describing languages.
- It is more powerful than finite automata or regular expressions.
- It still cannot define all possible languages.
- Useful for nested structures, e.g., parentheses in programming languages.

Context-Free Grammars

- Basic idea is to use variables to stand for sets of strings (i.e., languages).
- These variable are defined recursively, in terms of one another.
- Recursive rules (productions) involve only concatenation.
- Alternative rules for a variable allow union.

Example: CFG for $\left\{0^{n} 1^{n} \mid n \geq 1\right\}$

- Productions:
$S \rightarrow 01$
$\mathrm{S} \rightarrow 0 \mathrm{~S} 1$
- Basis: 01 is in the language.
- Induction: If w is in the language, then so is $0 w 1$.

CFG Formalism

- Terminals: symbols of the alphabet of the language being defined.
- Variables (nonterminals): a finite set of other symbols, each of which represents a language.
- Start symbol: the variable whose language is the one being defined.

Productions

- A production has the form variable \rightarrow string of variables and terminals
- Convention
- A, B, C,... are variables.
- a, b, c,... are terminals.
- ..., X, Y, Z are either terminals or variables.
- ..., w, x, y, z are strings of terminals only.
- $\alpha, \beta, \gamma, \ldots$ are strings of terminals and/or variables.

Example: Formal CFG

- Here is a formal CFG for $\left\{0^{n} 1^{n} \mid n \geq 1\right\}$.
- Terminals $=\{0,1\}$.
- Variables $=\{\mathrm{S}\}$.
- Start symbol $=$ S.
- Productions =
$S \rightarrow 01$
$S \rightarrow 0$ S1

Derivations - Intuition

- We derive strings in the language of a CFG by starting with the start symbol, and repeatedly replacing some variable A by the right side of one of its productions.
- That is, the productions for A are those that have A on the left side of the \rightarrow.

Derivations - Formalism

- We say $\alpha \mathrm{A} \beta \Rightarrow \alpha \gamma \beta$ if $\mathrm{A} \rightarrow \gamma$ is a production.
- Example: $S \rightarrow 01 ; S \rightarrow 0 \mathrm{~S} 1$.
- $\mathrm{S} \Rightarrow \mathrm{OS} 1 \Rightarrow 00 \mathrm{~S} 11 \Rightarrow 000111$.

Iterated Derivation

- \Rightarrow^{*} means zero or more derivation steps.
- Basis: $\alpha \Rightarrow^{*} \alpha$ for any string α.
- Induction: if $\alpha \Rightarrow^{*} \beta$ and $\beta \Rightarrow \gamma$, then $\alpha \Rightarrow^{*} \gamma$.

Example: Iterated Derivation

- $S \rightarrow 01 ; S \rightarrow 0 S 1$.
- $S \Rightarrow 0 S 1 \Rightarrow 00 S 11 \Rightarrow 000111$.
- So $S \Rightarrow^{*} S ; S \Rightarrow^{*} 0 S 1 ; S \Rightarrow^{*} 00 S 11 ; S \Rightarrow^{*} 000111$.

Sentential Forms

- Any string of variables and/or terminals derived from the start symbol is called a sentential form.
- Formally, α is a sentential form iff $S \Rightarrow^{*} \alpha$.

Language of a Grammar

- If G is a CFG, then $L(G)$, the language of G is $\left\{w \mid S \Rightarrow^{*} w\right\}$. - Note: w must be a terminal string, S is the start symbol.
- Example: G has productions $S \rightarrow \varepsilon$ and $S \rightarrow 0 S 1$.
- Note: ε is a valid right hand side.
- $L(G)=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

Context-Free Languages

- A language that is defined by some CFG is called a context-free language.
- There are CFL's that are not regular languages, such as the example just given.
- But not all languages are CFL's.
- Intuition: CFL's can count two things, not three.

BNF Notation

- Grammars for programming languages are often written in Backus-Naur Form (BNF).
- Variables are words in $<\ldots$, e.g., <statement>.
- Terminals are often multicharacter strings indicated by boldface or underline, e.g., while or WHILE.

BNF Notation

- Symbol $::=$ is often used for \rightarrow.
- Symbol \| is used for or.
- A shorthand for a list of productions with the same left side. Example: $\mathrm{S} \rightarrow 0 \mathrm{~S} 1 \mid 01$ is a shorthand for $S \rightarrow 0 S 1$ and $S \rightarrow 01$.

BNF Notation: Kleene Closure

- Symbol . . . is used for one or more.
- Example: <digit> ::=0|1|2|3|4|5|6|7|8|9
<unsigned integer> ::=<digit>...
- Note: that's not exactly the * for RE's.
- Translation: Replace $\alpha \ldots$ with a new variable A and productions $\mathrm{A} \rightarrow \mathrm{A} \alpha \mid \alpha$.
- Grammar for unsigned integers can be replaced by: $\mathrm{U} \rightarrow \mathrm{UD} \mid \mathrm{D}$
$\mathrm{D} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9$

BNF Notation: Optional Elements

- Surround one or more symbols by [...] to make them optional.
- Example: <statement> ::= if <condition> then
<statement> [;else <statement>]
- Translation: replace $[\alpha]$ by a new variable A with productions $\mathrm{A} \rightarrow \mid \varepsilon$.
- Grammar for if-then-else can be replaced by: $\mathrm{S} \rightarrow \mathrm{iCtSA}$
$A \rightarrow ; e S \mid \varepsilon$

BNF Notation: Grouping

- Use $\{\ldots\}$ to surround a sequence of symbols that need to be treated as a unit.
- Typically, they are followed by a ... for one or more.
- Example:
<statement list> : $=$ <statement> $[\{;<$ statement> $>\ldots$...]

BNF Notation: Grouping (Translation)

- You may, if you wish, create a new variable A for $\{\alpha\}$.
- One production for $\mathrm{A}: \mathrm{A} \rightarrow \alpha$.
- Use A in place of $\{\alpha\}$.

Example: Grouping

$$
L \rightarrow S[\{; S\} \ldots]
$$

- Replace L \rightarrow S[A...]; A \rightarrow;
- A stands for $\{; S\}$.
- Then by $L \rightarrow S B ; B \rightarrow A . . \mid \varepsilon ; A \rightarrow ; S$
- B stands for [A...] (zero or more A's).
- Finally by $\mathrm{L} \rightarrow \mathrm{SB} ; \mathrm{B} \rightarrow \mathrm{C}|\varepsilon ; \mathrm{C} \rightarrow \mathrm{AC}| \mathrm{A} ; \mathrm{A} \rightarrow ; \mathrm{S}$.
- C stands for A...

Leftmost and Rightmost Derivations

- Derivations allow us to replace any of the variables in a string.
- Leads to many different derivations of the same string.
- By forcing the leftmost variable (or alternatively, the rightmost variable) to be replaced, we avoid these distinctions without a difference.

Leftmost Derivations

- Say $w A \alpha \Rightarrow_{\text {Im }} w \beta \alpha$ if w is a string of terminals only and $A \rightarrow$ β is a production.
- Also, $\alpha \Rightarrow{ }_{\text {Im }}^{*} \beta$ if α becomes β by a sequence of zero or more \Rightarrow Im steps.

Example: Leftmost Derivations

- Balanced parantheses grammar:

$$
S \rightarrow S S|(S)|()
$$

- $\mathrm{S} \Rightarrow_{\mathrm{Im}} \mathrm{SS} \Rightarrow_{\operatorname{lm}}(\mathrm{S}) \mathrm{S} \Rightarrow_{\mathrm{Im}}(()) \mathrm{S} \Rightarrow_{\mathrm{Im}}(())()$
- Thus, $S \Rightarrow{ }_{\text {Im }}^{*}(())()$
- $S \Rightarrow S S \Rightarrow S() \Rightarrow(S)() \Rightarrow(())()$ is a derivation, but not a leftmost derivation.

Rightmost Derivations

- Say $\alpha \mathrm{Aw} \Rightarrow_{r m} \alpha \beta \mathrm{w}$ if w is a string of terminals only and $\mathrm{A} \rightarrow$ β is a production.
- Also, $\alpha \Rightarrow{ }_{\mathrm{rm}}^{*} \beta$ if α becomes β by a sequence of zero or more $\Rightarrow_{\mathrm{rm}}$ steps.

Example: Rightmost Derivations

- Balanced parantheses grammar:

$$
S \rightarrow S S|(S)|()
$$

- $\mathrm{S} \Rightarrow{ }_{\mathrm{rm}} \mathrm{SS} \Rightarrow{ }_{\mathrm{rm}} \mathrm{S}() \Rightarrow_{\mathrm{rm}}(\mathrm{S})() \Rightarrow_{\mathrm{rm}}(())()$
- Thus, $\mathrm{S} \Rightarrow_{\mathrm{rm}}^{*}(())()$
- $\mathrm{S} \Rightarrow \mathrm{SS} \Rightarrow \mathrm{SSS} \Rightarrow \mathrm{S}() \mathrm{S} \Rightarrow()() \mathrm{S} \Rightarrow()()()$ is neither a rightmost derivation nor a leftmost derivation.

Parse Trees

- Parse trees are trees labeled by symbols of a particular CFG.
- Leaves: labeled by a terminal or ε.
- Interior nodes: labeled by a variable.
- Children are labeled by the right side of a production for the parent.
- Root: must be labeled by the start symbol.

Example: Parse Tree

$$
S \rightarrow S S|(S)|()
$$

Yield of a Parse Tree

- The concatenation of the labels of the leaves in left-to-right order is called the yield of the parse tree.
- Example: Yield of the given parse tree is $(())()$.

Parse Trees, Leftmost and Rightmost Derivations

- For every parse tree, there is a unique leftmost and a unique rightmost derivation.
- We'll prove:
(1) If there is a parse tree with root labeled A and yield w, then A $\Rightarrow{ }_{\text {m }}^{*} \mathrm{w}$.
(2) If $A \Rightarrow{ }_{1 m}^{*} w$, then there is a parse tree with root A and yield w.

Part 1: Basis

- Induction on the height (length of the longest path from the root) of the tree.
- Basis: height 1. Tree looks like

- $\mathrm{A} \rightarrow a_{1} \ldots a_{n}$ must be a production.
- Thus, $A \Rightarrow{ }_{\text {Im }}^{*} a_{1} \ldots a_{n}$.

Part 1: Induction

- Assume (1) for trees of height $<h$, and let this tree have height h :
- By IH, $\mathrm{X}_{i} \Rightarrow{ }_{\mathrm{Im}}^{*} \mathrm{w}_{i}$.
- Note: If X_{i} is a terminal, then $X_{i}=w_{i}$.

- Thus, $A \Rightarrow{ }_{I m} X_{1} \ldots X_{n} \Rightarrow{ }_{I m}^{*} \mathrm{w}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{n} \Rightarrow_{{ }_{\mathrm{m}}}^{*} \mathrm{w}_{1} \mathrm{w}_{2} \mathrm{X}_{3} \ldots \mathrm{X}_{n}$ $\Rightarrow{ }_{1 \mathrm{~m}}^{*} \ldots \Rightarrow{ }_{{ }_{\mathrm{Im}}}^{*} \mathrm{w}_{1} \ldots \mathrm{w}_{n}$

Part 2

- Given a leftmost derivation of a terminal string, we need to prove the existence of a parse tree.
- The proof is an induction on the length of the derivation.

Part 2: Basis

- If $A \Rightarrow{ }_{\text {Im }}^{*} a_{1} a_{2} \ldots a_{n}$ by a one-step derivation, then there must be a parse tree

Part 2: Induction

- Assume (2) for derivations of fewer than $k>1$ steps, and let $A \Rightarrow{ }_{\text {Im }}^{*}$ w be a k-step derivation.
- First step is $A \Rightarrow_{I m} X_{1} \ldots X_{n}$.
- Key point: w can be divided such that the first portion is derived from X_{1}, the next is derived from X_{2}, and so on.
- If X_{i} is a terminal, then $w_{i}=X_{i}$.

Part 2: Induction

- That is, $X_{i} \Rightarrow{ }_{1 m}^{*} \mathrm{w}_{i}$ for all i such that X_{i} is a variable.
- And the derivation takes fewer than k steps.
- By the $\mathbf{I H}$, if X_{i} is a variable, then there is a parse tree with root X_{i} and yield w_{i}.
- Thus, there is a parse tree

Parse Trees and Rightmost Derivations

- The ideas are essentially the mirror image of the proof of the leftmost derivations.
- Left to the imagination!

Parse Trees and Any Derivation

- The proof that you can obtain a parse tree from a leftmost derivation doesn't really depend on leftmost.
- First step still has to be $A \Rightarrow_{\operatorname{lm}} X_{1} \ldots X_{n}$.
- And w can still be divided such that the first portion is derived from X_{1}, the next is derived from X_{2}, and so on.

Ambiguous Grammars

- A CFG is ambiguous is there is a string in the language that is the yield of two or more parse trees.
- Example: $\mathrm{S} \rightarrow \mathrm{SS}|(\mathrm{S})|()$
- Two parse trees for ()()() !

Ambiguity, Leftmost and Rightmost Derivations

- If there are two different parse trees, they must produce two different leftmost derivations by the construction given in the proof.
- Conversely, two different leftmost derivations produce different parse trees by the other part of the proof.
- Likewise for rightmost derivations.

Ambiguity, Leftmost and Rightmost Derivations

- Thus, equivalent definitions for ambiguous grammar are:
(1) There is a string in the language that has two different leftmost derivations.
(2) There is a string in the language that has two different rightmost derivations.

