Context-Free Languages and Parse Trees

Mridul Aanjaneya

Stanford University

July 12, 2012

- A context-free grammar is a notation for describing languages.
- It is more powerful than finite automata or regular expressions.
- It still cannot define all possible languages.
- Useful for nested structures, e.g., parentheses in programming languages.

- Basic idea is to use variables to stand for sets of strings (i.e., languages).
- These variable are defined recursively, in terms of one another.
- Recursive rules (productions) involve only concatenation.
- Alternative rules for a variable allow union.

- Productions:
 - $S \rightarrow 01$
 - ${\color{black}{S}} \rightarrow 0{\color{black}{S}}1$
- **Basis:** 01 is in the language.
- Induction: If w is in the language, then so is 0w1.

- **Terminals:** symbols of the alphabet of the language being defined.
- Variables (nonterminals): a finite set of other symbols, each of which represents a language.
- **Start symbol:** the variable whose language is the one being defined.

- A production has the form variable → string of variables and terminals
- Convention
 - A, B, C,... are variables.
 - a, b, c,... are terminals.
 - ..., X, Y, Z are either terminals or variables.
 - ..., w, x, y, z are strings of terminals only.
 - α , β , γ ,... are strings of terminals and/or variables.

- Here is a formal CFG for $\{0^n 1^n \mid n \ge 1\}$.
- Terminals = $\{0,1\}$.
- Variables = $\{S\}$.
- Start symbol = S.
- Productions =
 - $S \rightarrow 01$
 - ${\color{black}{S}} \rightarrow 0{\color{black}{S}}1$

- We derive strings in the language of a CFG by starting with the start symbol, and repeatedly replacing some variable A by the right side of one of its productions.
- That is, the productions for A are those that have A on the left side of the \rightarrow .

- We say $\alpha A\beta \Rightarrow \alpha \gamma \beta$ if $A \rightarrow \gamma$ is a production.
- Example: $S \rightarrow 01$; $S \rightarrow 0S1$.
- $S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 000111$.

- \Rightarrow^* means zero or more derivation steps.
- **Basis:** $\alpha \Rightarrow^* \alpha$ for any string α .
- Induction: if $\alpha \Rightarrow^* \beta$ and $\beta \Rightarrow \gamma$, then $\alpha \Rightarrow^* \gamma$.

- $S \rightarrow 01$; $S \rightarrow 0S1$.
- $S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 000111$.
- So $S \Rightarrow^* S$; $S \Rightarrow^* 0S1$; $S \Rightarrow^* 00S11$; $S \Rightarrow^* 000111$.

- Any string of variables and/or terminals derived from the start symbol is called a sentential form.
- Formally, α is a sentential form iff $S \Rightarrow^* \alpha$.

- If G is a CFG, then L(G), the language of G is $\{w \mid S \Rightarrow^* w\}$.
 - Note: w must be a terminal string, S is the start symbol.
- **Example:** G has productions $S \rightarrow \varepsilon$ and $S \rightarrow 0S1$.
 - Note: ε is a valid right hand side.
- $L(G) = \{0^n 1^n \mid n \ge 0\}.$

- A language that is defined by some CFG is called a context-free language.
- There are CFL's that are not regular languages, such as the example just given.
- But not all languages are CFL's.
- Intuition: CFL's can count two things, not three.

- Grammars for programming languages are often written in Backus-Naur Form (BNF).
- Variables are words in < . . . >, e.g., <statement>.
- Terminals are often multicharacter strings indicated by boldface or underline, e.g., **while** or <u>WHILE</u>.

- Symbol ::= is often used for \rightarrow .
- Symbol | is used for or.

• A shorthand for a list of productions with the same left side. **Example:** S \rightarrow 0S1 | 01 is a shorthand for S \rightarrow 0S1 and S \rightarrow 01.

- Symbol ... is used for one or more.
- Example: <digit> ::= 0|1|2|3|4|5|6|7|8|9<unsigned integer> ::= <digit> ...
 - Note: that's not exactly the * for RE's.
- Translation: Replace α... with a new variable A and productions A → Aα | α.
- Grammar for unsigned integers can be replaced by: $U \rightarrow UD \mid D$ $D \rightarrow 0|1|2|3|4|5|6|7|8|9$

- Surround one or more symbols by [...] to make them optional.
- Example: <statement> ::= if <condition> then <statement> [;else <statement>]
- Translation: replace [α] by a new variable A with productions A \rightarrow | ε .
- Grammar for if-then-else can be replaced by: $\underset{\mbox{S}}{\mbox{S}} \rightarrow iCtSA$

 $\mathsf{A} \to ; \mathsf{e}\mathsf{S} \mid \varepsilon$

• Use {...} to surround a sequence of symbols that need to be treated as a unit.

• Typically, they are followed by a ... for one or more.

• Example:

<statement list> ::= <statement> [{;<statement>}...]

- You may, if you wish, create a new variable A for $\{\alpha\}$.
- One production for $A: A \rightarrow \alpha$.
- Use A in place of $\{\alpha\}$.

 $\mathsf{L} \to \mathsf{S}[\{;\!\mathsf{S}\}\!\ldots]$

- Replace L → S[A...]; A → ;S
 A stands for {;S}.
- Then by L \rightarrow SB; B \rightarrow A... | ε ; A \rightarrow ;S
 - B stands for [A...] (zero or more A's).
- Finally by L → SB; B → C | ε; C → AC | A; A → ;S.
 C stands for A...

- Derivations allow us to replace any of the variables in a string.
- Leads to many different derivations of the same string.
- By forcing the leftmost variable (or alternatively, the rightmost variable) to be replaced, we avoid these distinctions without a difference.

- Say $wA\alpha \Rightarrow_{Im} w\beta\alpha$ if w is a string of terminals only and $A \rightarrow \beta$ is a production.
- Also, $\alpha \Rightarrow_{Im}^* \beta$ if α becomes β by a sequence of zero or more \Rightarrow_{Im} steps.

Balanced parantheses grammar:

$$\mathsf{S} \to \mathsf{SS} \mid (\mathsf{S}) \mid ()$$

•
$$S \Rightarrow_{\mathsf{Im}} SS \Rightarrow_{\mathsf{Im}} (S)S \Rightarrow_{\mathsf{Im}} (())S \Rightarrow_{\mathsf{Im}} (())()$$

- Thus, S $\Rightarrow^*_{\mathsf{Im}}$ (())()
- $S \Rightarrow SS \Rightarrow S() \Rightarrow (S)() \Rightarrow (())()$ is a derivation, but not a leftmost derivation.

- Say $\alpha Aw \Rightarrow_{rm} \alpha \beta w$ if w is a string of terminals only and $A \rightarrow \beta$ is a production.
- Also, $\alpha \Rightarrow_{rm}^* \beta$ if α becomes β by a sequence of zero or more \Rightarrow_{rm} steps.

• Balanced parantheses grammar:

 $\mathsf{S} \to \mathsf{SS} \mid (\mathsf{S}) \mid ()$

•
$$S \Rightarrow_{\mathsf{rm}} SS \Rightarrow_{\mathsf{rm}} S() \Rightarrow_{\mathsf{rm}} (S)() \Rightarrow_{\mathsf{rm}} (())()$$

• Thus, S
$$\Rightarrow^*_{\mathsf{rm}}$$
 (())()

• $S \Rightarrow SS \Rightarrow SSS \Rightarrow S()S \Rightarrow ()()S \Rightarrow ()()()$ is neither a rightmost derivation nor a leftmost derivation.

- Parse trees are trees labeled by symbols of a particular CFG.
- Leaves: labeled by a terminal or ε .
- Interior nodes: labeled by a variable.
 - Children are labeled by the right side of a production for the parent.
- Root: must be labeled by the start symbol.

Example: Parse Tree

$\mathsf{S}\to\mathsf{SS}\mid(\mathsf{S})\mid()$

Yield of a Parse Tree

- The concatenation of the labels of the leaves in left-to-right order is called the yield of the parse tree.
- **Example:** Yield of the given parse tree is (())().

- For every parse tree, there is a unique leftmost and a unique rightmost derivation.
- We'll prove:
 - If there is a parse tree with root labeled A and yield w, then A \Rightarrow^*_{Im} w.
 - **2** If $A \Rightarrow_{Im}^* w$, then there is a parse tree with root A and yield w.

- Induction on the height (length of the longest path from the root) of the tree.
- Basis: height 1. Tree looks like

• $A \rightarrow a_1 \dots a_n$ must be a production.

• Thus,
$$A \Rightarrow^*_{\operatorname{Im}} a_1 \dots a_n$$
.

Part 1: Induction

- Assume (1) for trees of height < h, and let this tree have height h:
- By **IH**, $X_i \Rightarrow_{Im}^* w_i$.
 - Note: If X_i is a terminal, then $X_i = w_i$.

• Thus, $A \Rightarrow_{Im} X_1 \dots X_n \Rightarrow_{Im}^* w_1 X_2 \dots X_n \Rightarrow_{Im}^* w_1 w_2 X_3 \dots X_n$ $\Rightarrow_{Im}^* \dots \Rightarrow_{Im}^* w_1 \dots w_n$

- Given a leftmost derivation of a terminal string, we need to prove the existence of a parse tree.
- The proof is an induction on the length of the derivation.

 If A ⇒^{*}_{Im} a₁a₂...a_n by a one-step derivation, then there must be a parse tree

- Assume (2) for derivations of fewer than k>1 steps, and let $A\Rightarrow^*_{Im}w$ be a k-step derivation.
- First step is $A \Rightarrow_{Im} X_1 \dots X_n$.
- Key point: w can be divided such that the first portion is derived from X₁, the next is derived from X₂, and so on.
 - If X_i is a terminal, then $w_i = X_i$.

Part 2: Induction

- That is, $X_i \Rightarrow_{Im}^* w_i$ for all i such that X_i is a variable.
 - And the derivation takes fewer than k steps.
- By the IH, if X_i is a variable, then there is a parse tree with root X_i and yield w_i.
- Thus, there is a parse tree

- The ideas are essentially the mirror image of the proof of the leftmost derivations.
- Left to the imagination!

- The proof that you can obtain a parse tree from a leftmost derivation doesn't really depend on leftmost.
- First step still has to be $A \Rightarrow_{Im} X_1 \dots X_n$.
- And w can still be divided such that the first portion is derived from X₁, the next is derived from X₂, and so on.

38/41

- A CFG is ambiguous is there is a string in the language that is the yield of two or more parse trees.
- Example: $S \rightarrow SS \mid (S) \mid ()$
- Two parse trees for ()()()!

- If there are two different parse trees, they must produce two different leftmost derivations by the construction given in the proof.
- Conversely, two different leftmost derivations produce different parse trees by the other part of the proof.
- Likewise for rightmost derivations.

Ambiguity, Leftmost and Rightmost Derivations

- Thus, equivalent definitions for ambiguous grammar are:
 - There is a string in the language that has two different leftmost derivations.
 - There is a string in the language that has two different rightmost derivations.