Homomorphisms and Efficient State Minimization

Mridul Aanjaneya

July 10, 2012

Homomorphisms

- A homomorphism on an alphabet is a function that gives a string for each symbol in that alphabet.
- Example: $h(0)=a b, h(1)=\varepsilon$.
- Extend to strings by $h\left(a_{1} a_{2} \ldots a_{n}\right)=h\left(a_{1}\right) h\left(a_{2}\right) \ldots h\left(a_{n}\right)$.
- Example: $\mathrm{h}(01010)=$ ababab.

Closure Properties: Homomorphism

- If L is regular, and h is a homomorphism on its alphabet, then $h(L)=\{h(w) \mid w \in L\}$ is also regular.
- Proof: Let E be a regular expression for L .
- Apply h to each symbol in E.
- Language of resulting RE is $h(\mathrm{~L})$.

Closure under Homomorphism: Example

- Let $h(0)=a b, h(1)=\varepsilon$.
- Let L be the language of a regular expression $01^{*}+10^{*}$.
- Then $h(\mathrm{~L})$ is the language of regular expression $a b \varepsilon^{*}+\varepsilon(a b)^{*}$.
- Note: $a b \varepsilon^{*}+\varepsilon(a b)^{*}=a b+(a b)^{*}=(a b)^{*}$.

Inverse Homomorphisms

- Let h be a homomorphism and L a language whose alphabet is the output language of h.
- $h^{-1}(L)=\{w \mid h(w) \in L\}$.

Inverse Homomorphisms: Example

- Let $h(0)=a b, h(1)=\varepsilon$.
- Let $L=\{a b a b, b a b a\}$.
- $h^{-1}(L)=$ the language with two 0 's and any number of 1 ' $s=$ $\mathrm{L}\left(1^{*} 01^{*} 01^{*}\right)$.
- Note: No string maps to baba, any string with exactly two 0 's maps to abab.

Closure Proof for Inverse Homomorphism

- Start with a DFA A for L.
- Construct a DFA B for $h^{-1}(\mathrm{~L})$ with:
- The same set of states.
- The same start state.
- The same final states.
- Input alphabet $=$ the symbols to which the homomorphism h applies.
- The transitions for B are computed by applying h to an input symbol a and seeing where A would go on sequence of input symbols $\mathrm{h}(\mathrm{a})$.
- Formally, $\delta_{B}(\mathrm{q}, \mathrm{a})=\delta_{A}(\mathrm{q}, \mathrm{h}(\mathrm{a}))$.

Inverse Homomorphism Construction: Example

- $\mathrm{h}(0)=\mathrm{ab}, \mathrm{h}(1)=\varepsilon$.

Closure Proof for Inverse Homomorphism

- Induction on $|w|$ shows that $\delta_{B}\left(\mathrm{q}_{0}, \mathrm{w}\right)=\delta_{A}\left(\mathrm{q}_{0}, \mathrm{~h}(\mathrm{w})\right)$.
- Basis: $w=\varepsilon$.

$$
\begin{aligned}
& \delta_{B}\left(\mathrm{q}_{0}, \varepsilon\right)=\mathrm{q}_{0}, \text { and } \\
& \delta_{A}\left(\mathrm{q}_{0}, \mathrm{~h}(\varepsilon)\right)=\delta_{A}\left(\mathrm{q}_{0}, \varepsilon\right)=\mathrm{q}_{0} .
\end{aligned}
$$

- Inductive Step: Let $w=x a$, assume IH for \times.
- $\delta_{B}\left(\mathrm{q}_{0}, \mathrm{w}\right)=\delta_{B}\left(\delta_{B}\left(\mathrm{q}_{0}, \mathrm{x}\right), \mathrm{a}\right)=\delta_{B}\left(\delta_{A}\left(\mathrm{q}_{0}, \mathrm{~h}(\mathrm{x})\right), \mathrm{a}\right)($ from IH)
- $=\delta_{A}\left(\delta_{A}\left(q_{0}, \mathrm{~h}(\mathrm{x})\right), \mathrm{h}(\mathrm{a})\right)$ (by definition of B$)$
- $=\delta_{A}\left(\mathrm{q}_{0}, \mathrm{~h}(\mathrm{x}) \mathrm{h}(\mathrm{a})\right)$ (by definition of extended $\left.\delta_{A}\right)$
- $=\delta_{A}\left(\mathrm{q}_{0}, \mathrm{~h}(\mathrm{w})\right)$ (by definition of h)

Decision Property: Equivalence

- Given regular languages L and M, is $L=M$?
- Algorithm involves constructing the product DFA P from DFA's for L and M .
- Make the final states of P be those states [q,r] such that exactly one of q and r is a final state of its own DFA.
- Thus, P accepts w iff w is in exactly one of L and M.
- The product DFA's language is empty iff $L=M$.
- Note: We already have a better algorithm to test emptiness.

Minimum State DFA

- In principle, since we can test for equivalence of DFA's we can, given a DFA A find the DFA with the fewest states accepting $L(A)$.
- Test all smaller DFA's for equivalence with A.
- But thats a terrible algorithm.

Efficient State Minimization

- Construct a table with all pairs of states.
- If you find a string that distinguishes two states (takes exactly one to an accepting state), mark that pair.
- Algorithm is a recursion on the length of the shortest distinguishing string.

Efficient State Minimization

- Basis: Mark a pair if exactly one is a final state.
- Induction: Mark [q,r] if there is some input symbol a such that $[\delta(\mathrm{q}, \mathrm{a}), \delta(\mathrm{r}, \mathrm{a})]$ is marked.
- After no more marks are possible, the unmarked states are equivalent and can be merged into one state.

Constructing the Minimum State DFA

- Suppose $\mathrm{q}_{1}, \ldots, \mathrm{q}_{k}$ are indistinguishable states.
- Replace them by one state q.
- Then $\delta\left(\mathrm{q}_{1}, \mathrm{a}\right), \ldots, \delta\left(\mathrm{q}_{k}, \mathrm{a}\right)$ are all indistinguishable states, otherwise, we should have marked at least one more pair.
- Let $\delta(\mathrm{q}, \mathrm{a})=$ the representative state for that group.

Eliminating Indistinguishable States

- Unfortunately, combining indistinguishable states could leave us with unreachable states in the minimum-state DFA.
- Thus, before or after, remove states that are not reachable from the start state.

Example: State Minimization

Transitivity of "Indistinguishable"

Proposition

If state p is indistinguishable from q, and q is indistinguishable from r, then p is indistinguishable from r.

- Proof: The outcome (accept or don't) of p and q on input w is the same, and the outcome of q and r on w is the same, then likewise the outcome of p and r.

Clincher

- We have combined states of the given DFA wherever possible.
- Could there be another, completely unrelated DFA with fewer states?
- No. The proof involves minimizing the DFA we derived with the hypothetical better DFA.

Proof: No Unrelated, Smaller DFA

- Let A be our minimized DFA; let B be a smaller equivalent.
- Consider an automaton with the states of A and B combined.
- Use distinguishable in its contrapositive form:
- If states q and p are indistinguishable, so are $\delta(\mathrm{q}, \mathrm{a})$ and $\delta(\mathrm{p}, \mathrm{a})$.

Inductive Hypothesis

Hypothesis

Every state q of A is indistinguishable from some state of B.

- Induction is on the length of the shortest string taking you from the start state of A to q.

Induction

- Basis: Start states of A and B are indistinguishable, because $L(A)=L(B)$.
- Induction: Suppose $w=x a$ is a shortest string getting A to state q.
- By the $\mathbf{I H}, \times$ gets A to some state r that is indistinguishable from some state p of B.
- Then $\delta(\mathrm{r}, \mathrm{a})=\mathrm{q}$ is indistinguishable from $\delta(\mathrm{p}, \mathrm{a})$.

Induction

- Key idea: Two states of A cannot be indistinguishable from the same state of B, or they would be indistinguishable from each other.
- But A is already a minimum state DFA!
- Thus, B has at least as many states as A.

Fibonacci Numbers and the Golden Ratio

$$
\begin{aligned}
F_{n} & =F_{n-1}+F_{n-2} \\
\Rightarrow F_{n} & =\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right\}
\end{aligned}
$$

