The Pumping Lemma and Closure Properties

Mridul Aanjaneya

July 5, 2012

- HW #1: Out (07/03), Due (07/11)
- HW #2: Out (07/10), Due (07/18)
- HW #3: Out (07/17), Due (07/25)
- Midterm: 07/31 (in class)
- HW #4: Out (07/31), Due (08/08)
- Tentative grades out by 08/12.
- Final: 08/18 (?)

Is a given regular language L infinite?

- Start with a DFA for the language.
- Key idea: If the DFA has *n* states, and the language contains any string of length *n* or more, then the language is infinite.
- Otherwise, the language is surely finite.
 - Limited to strings of length *n* or less.

Proof of Key Idea

- If an *n*-state DFA accepts a string w of length *n* or more, then there must be a state that appears twice on the path labeled w from the start state to a final state.
 - Note: Pigeonhole principle! —
- Because there are at least n + 1 states along the path.

 Since y is not ε, we see an infinite number of strings in L of the form xyⁱz for all i ≥ 0.

Theorem

For every regular language L, there is an integer *n* such that for every string $w \in L$ of length $\geq n$, we can write w = xyz such that:

- $|xy| \leq n$.
- |**y**| > 0.
- For all $i \ge 0$, $xy^i z$ is in L.

The Pumping Lemma: Examples

Question

Prove that the language $L = \{0^{k}1^{k} \mid k \geq 1\}$ is not regular.

- Proof by contradiction. Suppose it were, and let a DFA with *n* states accept all strings in L.
- Choose the string $w = 0^{n}1^{n}$. We can write w = xyz where x and y consist of 0's, and $y \neq \varepsilon$.
- But then xyyz would be in L, and this string has more 0's than 1's!
- Choice of the proper string is very important!

• **Example:** $w = (01)^n$ does not work!

• Same argument as above also works for $\mathsf{L}=\{\mathsf{w}\mid\mathsf{w}\xspace$ has equal number of 0's and 1's.}

Prove that the language $L = \{ww \mid w \in \{0,1\}^*\}$ is not regular.

Prove that the language $\mathsf{L}=\{\mathsf{ww}\mid\mathsf{w}\in\{\mathsf{0},\mathsf{1}\}^*\}$ is not regular.

- Suppose it were, and let a DFA with *n* states accept all strings in L.
- Choose the string $w = 0^n 10^n 1$. We can write w = xyz where x and y consist of 0's, and $y \neq \varepsilon$.
- But then xyyz would be in L!
- Note that the string $w = 0^n 0^n$ does not work.

Prove that the language $L = \{1^{k^2} \mid k \ge 0\}$ is not regular.

Prove that the language $L = \{1^{k^2} \mid k \ge 0\}$ is not regular.

- Suppose it were, and let a DFA with *n* states accept all strings in L.
- Choose the string w = 1^{n²}. We can write w = xyz. Consider the string s = xyyz.
- We know that $|xy| \le n$ and thus $|y| \le n$. So no. of 1's in xyyz is $n^2 + n < n^2 + 2n + 1!$
- The parameter *n* is often called the pumping length.

Prove that the language $L = \{0^{i}1^{j} | i > j\}$ is not regular.

The Pumping Lemma: Examples

• Sometimes pumping down is useful as well!

- Let *n* be the pumping length, i.e., suppose there exists a DFA with *n* states that accepts all strings in L.
- Choose the string w = 0ⁿ⁺¹1ⁿ. We can write w = xyz where x and y consist of 0's, and y ≠ ε.
- The pumping lemma states that all strings $xy^i z \in L$, even for i = 0!
- The string w = xz cannot have more 0's than 1's.

Prove that the language $L = \{1^p \mid where p \text{ is prime}\}$ is not regular.

The Pumping Lemma: Examples

Question

Prove that the language $L = \{1^p \mid where p \text{ is prime}\}$ is not regular.

- Consider some primt $q \ge n+2$, where *n* is the pumping length.
- Choose the string $w = 1^q$. We can write w = xyz such that $y \neq \varepsilon$ and $|xy| \leq n$.
- Let |y| = m. Then |xz| = q m. Consider the string $s = xy^{q-m}z$ which is in L by the pumping lemma.
- $|xy^{q-m}z| = |xz| + (q-m)|y| = q-m + (q-m)m = (m+1)(q-m).$
- Note that m+1 > 1, as $y \neq \varepsilon$.
- Also note that $q \ge n+2$, and so q m > 1.

- A closure property of a language class says that given languages in the class, an operator (e.g., union) produces another language in the same class.
- **Example:** We saw that regular languages are closed under union, concatenation and Kleene closure (star) operations.
- We will see more examples: intersection, difference, reversal, homomorphism, inverse homomorphism.

Closure Properties: Intersection

- Construct the product DFA from DFA's for L and M.
- Let these DFA's have sets of states Q and R respectively.
- Product DFA has set of states $Q \times R$.
 - i.e., pairs [q,r] with $q \in Q$ and $r \in Q$.
- Start state = [q₀,r₀] (the start states of the DFA for L and M).
- Transitions: $\delta([q,r],a) = [\delta_L(q,a), \delta_M(r,a)].$
 - δ_L , δ_M are the transition functions for the DFA's of L and M.
 - i.e., we simulate the two DFA's in the two state components of the product DFA.
- Make final states be pairs consisting of final states of both DFA's of L and M.

Product DFA: Example

- If L and M are regular, then so is L M =strings in L but not in M.
- **Proof:** Let A and B be DFA's whose languages are L and M.
- Construct the product DFA C of A and B.
- Make the final states of C be the pairs where A-state is final but B-state is not.

Difference: Example

- If L and M are regular, then so is L M = strings in L but not in M.
- **Proof:** Let A and B be DFA's whose languages are L and M.
- Construct the product DFA C of A and B.
- Make the final states of C be the pairs where A-state is final but B-state is not.
- Note: Can also be used to test containment.
 - If $L M = \emptyset$, then $L \subseteq M$.
 - How did we test if the language of a DFA is empty?

- The complement of a language L is $\Sigma^* L$.
- Since Σ^* is regular, the complement is always regular.

- Given language L, L^R has all strings whose reversal is in L.
- **Example:** L = {0, 01, 100}; L^R = {0, 10, 001}
- **Proof:** Let E be a regular expression for L.
- We show how to reverse E, to provide a regular expression E^R for L^R.

- **Basis:** If E is a symbol a, ε , or \emptyset , then $E^R = E$.
- Induction: If E is:
 - F + G, then $E^R = F^R + G^R$
 - FG, then $E^R = G^R F^R$
 - F^* , then $E^R = (F^R)^*$

• Let
$$E = 01^* + 10^*$$
.

$$E^{R} = (01^{*} + 10^{*})^{R}$$

= (01^{*})^{R} + (10^{*})^{R}
= (1^{*})^{R}0^{R} + (0^{*})^{R}1^{R}
= (1^{R*})0^{R} + (0^{R*})1^{R}
= (1^{*})0 + (0^{*})1

- A homomorphism on an alphabet is a function that gives a string for each symbol in that alphabet.
- Example: $h(0) = ab, h(1) = \varepsilon$.
- Extend to strings by $h(a_1a_2...a_n)=h(a_1)h(a_2)...h(a_n)$.
- **Example:** h(01010) = ababab.

- If L is regular, and h is a homomorphism on its alphabet, then $h(L)=\{h(w)\mid w\in L\}$ is also regular.
- **Proof:** Let E be a regular expression for L.
- Apply h to each symbol in E.
- Language of resulting RE is h(L).

- Let h(0) = ab, $h(1) = \varepsilon$.
- Let L be the language of a regular expression $01^* + 10^*$.
- Then h(L) is the language of regular expression abε^{*} + ε(ab)^{*}.
- Note: $ab\varepsilon^* + \varepsilon(ab)^* = ab + (ab)^* = (ab)^*$.