The Pumping Lemma and Closure Properties

Mridul Aanjaneya

July 5, 2012

Tentative Schedule

- HW \#1: Out (07/03), Due (07/11)
- HW \#2: Out (07/10), Due $(07 / 18)$
- HW \#3: Out (07/17), Due (07/25)
- Midterm: 07/31 (in class)
- HW \#4: Out (07/31), Due (08/08)
- Tentative grades out by $08 / 12$.
- Final: 08/18 (?)

The Infiniteness Problem

Question

Is a given regular language L infinite?

- Start with a DFA for the language.
- Key idea: If the DFA has n states, and the language contains any string of length n or more, then the language is infinite.
- Otherwise, the language is surely finite.
- Limited to strings of length n or less.

Proof of Key Idea

- If an n-state DFA accepts a string w of length n or more, then there must be a state that appears twice on the path labeled w from the start state to a final state.
- Note: Pigeonhole principle! \because
- Because there are at least $n+1$ states along the path.

- Since y is not ε, we see an infinite number of strings in L of the form $x y y^{i} z$ for all $i \geq 0$.

The Pumping Lemma

Theorem

For every regular language L, there is an integer n such that for every string $w \in L$ of length $\geq n$, we can write $w=x y z$ such that:

- $|x y| \leq n$.
- $|y|>0$.
- For all $i \geq 0, x y^{i} z$ is in L .

The Pumping Lemma: Examples

Question

Prove that the language $L=\left\{0^{k} 1^{k} \mid k \geq 1\right\}$ is not regular.

- Proof by contradiction. Suppose it were, and let a DFA with n states accept all strings in L .
- Choose the string $w=0^{n} 1^{n}$. We can write $w=x y z$ where x and y consist of 0 's, and $\mathrm{y} \neq \varepsilon$.
- But then xyyz would be in L, and this string has more 0's than 1's!
- Choice of the proper string is very important!
- Example: w $=(01)^{n}$ does not work!
- Same argument as above also works for $L=\{w \mid w$ has equal number of 0 's and 1 's. \}

The Pumping Lemma: Examples

Question

Prove that the language $L=\left\{w w \mid w \in\{0,1\}^{*}\right\}$ is not regular.

The Pumping Lemma: Examples

Question

Prove that the language $L=\left\{w w \mid w \in\{0,1\}^{*}\right\}$ is not regular.

- Suppose it were, and let a DFA with n states accept all strings in L.
- Choose the string $w=0^{n} 10^{n} 1$. We can write $w=x y z$ where x and y consist of 0 's, and $y \neq \varepsilon$.
- But then xyyz would be in L!
- Note that the string $w=0^{n} 0^{n}$ does not work.

The Pumping Lemma: Examples

Question

Prove that the language $L=\left\{1^{k^{2}} \mid k \geq 0\right\}$ is not regular.

The Pumping Lemma: Examples

Question

Prove that the language $L=\left\{1^{k^{2}} \mid k \geq 0\right\}$ is not regular.

- Suppose it were, and let a DFA with n states accept all strings in L.
- Choose the string $w=1^{n^{2}}$. We can write $w=x y z$. Consider the string $\mathrm{s}=\mathrm{xyyz}$.
- We know that $|x y| \leq n$ and thus $|y| \leq n$. So no. of 1 's in xyyz is $n^{2}+n<n^{2}+2 n+1$!
- The parameter n is often called the pumping length.

The Pumping Lemma: Examples

Question

Prove that the language $L=\left\{0^{i} 1^{j} \mid i>j\right\}$ is not regular.

The Pumping Lemma: Examples

- Sometimes pumping down is useful as well!

Question

Prove that the language $L=\left\{0^{i} 1^{j} \mid i>j\right\}$ is not regular.

- Let n be the pumping length, i.e., suppose there exists a DFA with n states that accepts all strings in L .
- Choose the string $w=0^{n+1} 1^{n}$. We can write $w=x y z$ where x and y consist of 0 's, and $\mathrm{y} \neq \varepsilon$.
- The pumping lemma states that all strings $x y^{i} z \in \mathrm{~L}$, even for $i=0$!
- The string $w=x z$ cannot have more 0's than 1's.

The Pumping Lemma: Examples

Question

Prove that the language $L=\left\{1^{p} \mid\right.$ where p is prime $\}$ is not regular.

The Pumping Lemma: Examples

Question

Prove that the language $L=\left\{1^{p} \mid\right.$ where p is prime $\}$ is not regular.

- Consider some primt $q \geq n+2$, where n is the pumping length.
- Choose the string $w=1^{q}$. We can write $w=x y z$ such that y $\neq \varepsilon$ and $|x y| \leq n$.
- Let $|y|=m$. Then $|x z|=q-m$. Consider the string $s=$ $x y^{q-m} z$ which is in L by the pumping lemma.
- $\left|x y^{q-m} z\right|=|x z|+(q-m)|y|=q-m+(q-m) m=$ $(m+1)(q-m)$.
- Note that $m+1>1$, as $\mathrm{y} \neq \varepsilon$.
- Also note that $q \geq n+2$, and so $q-m>1$.

Closure Properties

- A closure property of a language class says that given languages in the class, an operator (e.g., union) produces another language in the same class.
- Example: We saw that regular languages are closed under union, concatenation and Kleene closure (star) operations.
- We will see more examples: intersection, difference, reversal, homomorphism, inverse homomorphism.

Closure Properties: Intersection

- Construct the product DFA from DFA's for L and M.
- Let these DFA's have sets of states Q and R respectively.
- Product DFA has set of states $Q \times R$.
- i.e., pairs $[q, r]$ with $q \in Q$ and $r \in Q$.
- Start state $=\left[q_{0}, r_{0}\right]$ (the start states of the DFA for L and M).
- Transitions: $\delta([q, r], a)=\left[\delta_{L}(q, a), \delta_{M}(r, a)\right]$.
- δ_{L}, δ_{M} are the transition functions for the DFA's of L and M.
- i.e., we simulate the two DFA's in the two state components of the product DFA.
- Make final states be pairs consisting of final states of both DFA's of L and M.

Product DFA: Example

Closure Properties: Difference

- If L and M are regular, then so is $L-M=$ strings in L but not in M.
- Proof: Let A and B be DFA's whose languages are L and M.
- Construct the product DFA C of A and B.
- Make the final states of C be the pairs where A-state is final but B -state is not.

Difference: Example

Closure Properties: Containment

- If L and M are regular, then so is $L-M=$ strings in L but not in M.
- Proof: Let A and B be DFA's whose languages are L and M.
- Construct the product DFA C of A and B.
- Make the final states of C be the pairs where A-state is final but B-state is not.
- Note: Can also be used to test containment.
- If $L-M=\emptyset$, then $L \subseteq M$.
- How did we test if the language of a DFA is empty?

Closure Properties: Complement

- The complement of a language L is $\Sigma^{*}-L$.
- Since Σ^{*} is regular, the complement is always regular.

Closure Properties: Reversal

- Given language L, L^{R} has all strings whose reversal is in L.
- Example: $L=\{0,01,100\}$;
$L^{R}=\{0,10,001\}$
- Proof: Let E be a regular expression for L.
- We show how to reverse E, to provide a regular expression E^{R} for L^{R}.

Reversal of a Regular Expression

- Basis: If E is a symbol a, ε, or \emptyset, then $\mathrm{E}^{R}=\mathrm{E}$.
- Induction: If E is:
- $F+G$, then $E^{R}=F^{R}+G^{R}$
- $F G$, then $E^{R}=G^{R} F^{R}$
- F^{*}, then $\mathrm{E}^{R}=\left(\mathrm{F}^{R}\right)^{*}$

Reversal of a RE: Example

- Let $\mathrm{E}=01^{*}+10^{*}$.

$$
\begin{aligned}
E^{R} & =\left(01^{*}+10^{*}\right)^{R} \\
& =\left(01^{*}\right)^{R}+\left(10^{*}\right)^{R} \\
& =\left(1^{*}\right)^{R} 0^{R}+\left(0^{*}\right)^{R} 1^{R} \\
& =\left(1^{R *}\right) 0^{R}+\left(0^{R *}\right) 1^{R} \\
& =\left(1^{*}\right) 0+\left(0^{*}\right) 1
\end{aligned}
$$

Homomorphisms

- A homomorphism on an alphabet is a function that gives a string for each symbol in that alphabet.
- Example: $h(0)=a b, h(1)=\varepsilon$.
- Extend to strings by $h\left(a_{1} a_{2} \ldots a_{n}\right)=h\left(a_{1}\right) h\left(a_{2}\right) \ldots h\left(a_{n}\right)$.
- Example: $\mathrm{h}(01010)=$ ababab.

Closure Properties: Homomorphism

- If L is regular, and h is a homomorphism on its alphabet, then $h(L)=\{h(w) \mid w \in L\}$ is also regular.
- Proof: Let E be a regular expression for L .
- Apply h to each symbol in E.
- Language of resulting RE is $h(\mathrm{~L})$.

Closure under Homomorphism: Example

- Let $h(0)=a b, h(1)=\varepsilon$.
- Let L be the language of a regular expression $01^{*}+10^{*}$.
- Then $h(\mathrm{~L})$ is the language of regular expression $a b \varepsilon^{*}+\varepsilon(a b)^{*}$.
- Note: $a b \varepsilon^{*}+\varepsilon(a b)^{*}=a b+(a b)^{*}=(a b)^{*}$.

