
Regular Expressions and Language Properties

Mridul Aanjaneya

Stanford University

July 3, 2012

Mridul Aanjaneya Automata Theory 1/ 47

Tentative Schedule

• HW #1: Out (07/03), Due (07/11)

• HW #2: Out (07/10), Due (07/18)

• HW #3: Out (07/17), Due (07/25)

• Midterm: 07/31

• HW #4: Out (07/31), Due (08/08)

• Tentative grades out by 08/12.

• Final: ?

Mridul Aanjaneya Automata Theory 2/ 47

Epsilon Transitions: Extended transition function

• Basis: δE (q,ε) = CL(q).

• Induction: δE (q,xa) is computed as follows:
1 Start with δE (q,x) = S.
2 Take the union of CL(δ(p,a)) for all p in S.

• Intuition: δE (q,w) is the set of states you can reach from q
following a path labeled w with ε’s in between.

Mridul Aanjaneya Automata Theory 3/ 47

Equivalence of NFA, ε-NFA

• Compute δN(q,a) as follows:

Let S = CL(q).
δN(q,a) is the union over all p in S of δE (p,a).

• F’ = set of states q such that CL(q) contains a state of F.

• Intuition: δN incorporates ε-transitions before using a.

• Proof of equivalence is by induction on |w| that
CL(δN(q0,w)) = δE (q0,w).

• Basis: CL(δN(q0,ε)) = CL(q0) = δE (q0,ε).

• Inductive step: Assume IH is true for all x shorter than w.
Let w = xa.

Then CL(δN(q0,xa)) = CL(δE (CL(δN(q0,x)),a)) (by definition).
But from IH, CL(δN(q0,x)) = δE (q0,x).
Hence, CL(δN(q0,w)) = CL(δE (δE (q0,x),a)) = δE (q0,w).

Mridul Aanjaneya Automata Theory 4/ 47

Example

0

0

1

1 1

ε

A

DCB

E F
0

ε

ε

0

0

1

1 1

A

DCB

E F
0

11

1

Mridul Aanjaneya Automata Theory 5/ 47

Recap

• DFA’s, NFA’s and ε-NFA’s all accept exactly the same set of
languages: the regular languages.

• NFA types are easier to design and may have exponentially
fewer states than a DFA.

• But only a DFA can be implemented!

Mridul Aanjaneya Automata Theory 6/ 47

Challenge Problem #1

Question

Are such tilings always possible?

Mridul Aanjaneya Automata Theory 7/ 47

Challenge Problem #2

Question

How many regions can you cut?

Mridul Aanjaneya Automata Theory 8/ 47

Regular Operators

• We define three regular operations on languages.

Definition

Let A and B be languages. We define the regular operations union,
concatenation, and star as follows.

• Union: A ∪ B = {x | x ∈ A or x ∈ B}.
• Concatenation: A ◦ B = {xy | x ∈ A and y ∈ B}.
• Star: A∗ = {x1x2 . . . xk | k ≥ 0 and each xi ∈ A}.

Kleene Closure

Denoted as A∗ and defined as the set of strings x1x2 . . . xn, for some
n ≥ 0, where each xi is in A.

• Note: When n = 0, the string is ε.

Mridul Aanjaneya Automata Theory 9/ 47

Example

• Let Σ = {a, b, . . . , z}. If A = {good,bad} and B = {boy,girl},
• A ∪ B = {good,bad,boy,girl},
• A ◦ B = {goodboy,goodgirl,badboy,badgirl},
• A∗ = {ε,good,bad,goodgood,goodbad,badgood,badbad,. . .},

Mridul Aanjaneya Automata Theory 10/ 47

Closure Properties: Union

Theorem

The class of regular languages is closed under the union operation,
i.e., if A1 and A2 are regular languages, so is A1 ∪ A2.

ε

ε

Mridul Aanjaneya Automata Theory 11/ 47

Closure Properties: Concatenation

Theorem

The class of regular languages is closed under concatenation.

ε

ε

Mridul Aanjaneya Automata Theory 12/ 47

Closure Properties: Star

Theorem

The class of regular languages is closed under the star operation.

ε ε

ε

ε

Mridul Aanjaneya Automata Theory 13/ 47

Regular Expressions

• Regular expressions describe languages algebraically.

• They describe exactly the regular languages.

• If E is a regular expression, then L(E) is its language.

• We give a recursive definition of RE’s and their languages.

Mridul Aanjaneya Automata Theory 14/ 47

Regular Expressions: Definition

1 Basis: If a is any symbol, then a is a RE, and L(a)={a}.
Note: {a} is the language containing one string, and that
string is of length 1.

2 Basis: ε is a RE, and L(ε) = {ε}.
3 Basis: ∅ is a RE, and L(∅) = ∅.

Mridul Aanjaneya Automata Theory 15/ 47

Regular Expressions: Definition

1 Induction: If E1 and E2 are regular expressions, then E1+E2

is a regular expression, and L(E1+E2) = L(E1)∪L(E2).

2 Induction: If E1 and E2 are regular expressions, then E1E2 is
a regular expression, and L(E1E2) = L(E1)L(E2).

3 Induction: If E is a regular expression, then E∗ is a regular
expression, and L(E∗) = (L(E))∗.

Mridul Aanjaneya Automata Theory 16/ 47

Precedence of operators

• Parentheses may be used wherever needed to influence the
grouping of operators.

• Order of precedence is ∗ (highest), then concatenation, then
+ (lowest).

Mridul Aanjaneya Automata Theory 17/ 47

Examples

• L(01) = {01}.
• L(01+0) = {01,0}.
• L(0(1+0)) = {01,00}.

Note: order of precedence.

• L(0∗) = {ε,0,00,000,. . .}
• L((0+10)∗(ε+1)) = all strings over {0,1} without 11’s.

Mridul Aanjaneya Automata Theory 18/ 47

Algebraic Laws for Regular Expressions

• Union and concatenation behave sort of like addition and
multiplication.

• + is commutative and associative.

• concatenation is associative.

• concatenation distributes over +.

• Exception: concatenation is not commutative.

Mridul Aanjaneya Automata Theory 19/ 47

Identities and Annihilators

• ∅ is the identity for +.

R + ∅ = R.

• ε is the identity for concatenation.

εR = Rε = R

• ∅ is the annihilator for concatenation.

∅R = R∅ = ∅.

Mridul Aanjaneya Automata Theory 20/ 47

Equivalence of Regular Expressions and Automata

• We need to show that for every regular expression, there is an
automaton that accepts the same language.

Pick the most powerful automaton type: ε-NFA.

• And we need to show that for every automaton, there is a
regular expression defining its language.

Pick the most restrictive type: the DFA.

Mridul Aanjaneya Automata Theory 21/ 47

Converting a RE to an ε-NFA

• Proof is an induction on the number of operators (+,
concatenation, ∗) in the regular expression.

• We always construct an automaton of a special form (next
slide).

Mridul Aanjaneya Automata Theory 22/ 47

RE to ε-NFA: Basis

• Symbol a:

a

• ε:

ε

• ∅:

Mridul Aanjaneya Automata Theory 23/ 47

RE to ε-NFA: Induction (Union)

• For E1 ∪ E2

ε

ε

ε

ε

E

E

1

2

Mridul Aanjaneya Automata Theory 24/ 47

RE to ε-NFA: Induction (Concatenation)

• For E1E2

E1 E2
ε

Mridul Aanjaneya Automata Theory 25/ 47

RE to ε-NFA: Induction (Star)

• For E∗

εEε

ε

ε

Mridul Aanjaneya Automata Theory 26/ 47

DFA to RE

• A strange sort of induction.

• States of the DFA are assumed to be 1, 2, . . . , n.

• We construct RE’s for the labels of restricted sets of paths.

Basis: single arcs or no arcs at all.
Induction: paths that are allowed to traverse next state in
order.

Mridul Aanjaneya Automata Theory 27/ 47

k-Paths

• A k-path is a path through the DFA that goes through no
state numbered higher than k .

• End-points are not restricted, they can be any state.

Mridul Aanjaneya Automata Theory 28/ 47

k-Paths: Example

1 2

3

0

0 0

1

1 1

• 0-paths from 2 to 3: RE for labels = 0

• 1-paths from 2 to 3: RE for labels = 0+11

• 2-paths from 2 to 3: RE for labels = (10)∗0+1(01)∗1

• 3-paths from 2 to 3: RE for labels = ??

Mridul Aanjaneya Automata Theory 29/ 47

k-Paths: Induction

• Let Rk
ij be the RE for the set of labels of k-paths from state i

to state j.
• Basis: k = 0. R0

ij = sum of labels of arcs from i to j.

∅ is no such arc.
But add ε if i=j.

1 2

3

0

0 0

1

1 1

• Example: R0
12 = 0, R0

11 = ∅+ ε = ε.

Mridul Aanjaneya Automata Theory 30/ 47

k-Paths: Inductive Step

• A k-path from i to j either:
1 Never goes through state k, or
2 Goes through state k one or more times.

Rk
ij = Rk−1

ij + Rk−1
ik (Rk−1

kk)∗Rk−1
kj

• The equivalent RE is the sum (union) of Rn
ij , where:

1 n is the number of states, i.e., the paths are unconstrained.
2 i is the start state.
3 j is one of the final states.

Mridul Aanjaneya Automata Theory 31/ 47

Summary

• Each of the three types of automata (DFA, NFA, ε-NFA) we
discussed, and regular expressions as well, define exactly the
same set of languages: the regular languages.

Mridul Aanjaneya Automata Theory 32/ 47

Challenge Problem

Question

Can you find the shortest path from A to B?

A

B

Mridul Aanjaneya Automata Theory 33/ 47

Properties of Language Classes

• A language class is a set of languages.

We have seen one example: the regular languages.
We’ll see many more in the class.

• Language classes have two important kinds of properties:
1 Decision properties
2 Closure properties

Mridul Aanjaneya Automata Theory 34/ 47

Representation of Languages

• Representations can be formal or informal.

• Example (formal): represent a language by a DFA or RE
defining it.

• Example (informal): a logical or prose statement about its
strings:

{0n1n|n is a nonnegative integer.}
The set of strings consisting of some number of 0’s followed by
the same number of 1’s.

Mridul Aanjaneya Automata Theory 35/ 47

Decision Properties

• A decision property for a class of languages is an algorithm
that takes a formal description of a language (e.g., a DFA)
and tells whether or not some property holds.

• Example: Is language L empty?

Mridul Aanjaneya Automata Theory 36/ 47

Representation matters ...

• You might imagine that the language is described informally,
so if my description is the empty language then yes, otherwise
no.

• But the representation is a DFA (or a RE that you will convert
to a DFA).

• Can you tell if L(A) = ∅ for a DFA A?

Mridul Aanjaneya Automata Theory 37/ 47

Why Decision Properties?

• Remember that DFA’s can represent protocols, and good
protocols are related to the language of the DFA.

• Example: Does the protocol terminate? = Is the language
finite?

• Example: Can the protocol fail? = Is the language
nonempty?

• We might want a smallest representation for a language, e.g.,
a minimum-state DFA or a shortest RE.

• If you can’t decide “Are these two languages the same?”, i.e.,
do two DFA’s define the same language - you can’t find a
“smallest”!

Mridul Aanjaneya Automata Theory 38/ 47

Closure Properties

• A closure property of a language class says that given
languages in the class, an operator (e.g., union) produces
another language in the same class.

• Example: We saw that regular languages are closed under
union, concatenation and Kleene closure (star) operations.

Mridul Aanjaneya Automata Theory 39/ 47

Why Closure Properties?

• Helps construct representations.

• Helps show (informally described) languages not to be in the
class.

Mridul Aanjaneya Automata Theory 40/ 47

The Membership Question

• Our first decision property is the question: “is the string w in
regular language L?”

• Assume L is represented by a DFA A.

• Simulate the action of A on the sequence of input symbols
forming w.

Question

What if L is not represented by a DFA?

• Use the circle of conversions:

RE → ε-NFA → NFA → DFA → RE

Mridul Aanjaneya Automata Theory 41/ 47

The Emptiness Problem

Question

Does a regular language L contain any string at all?

• Assume representation is a DFA.

• Compute the set of states reachable from the start state.

• If any final state is reachable, then yes, else no.

Mridul Aanjaneya Automata Theory 42/ 47

The Infiniteness Problem

Question

Is a given regular language L infinite?

• Start with a DFA for the language.

• Key idea: If the DFA has n states, and the language contains
any string of length n or more, then the language is infinite.

• Otherwise, the language is surely finite.

Limited to strings of length n or less.

Mridul Aanjaneya Automata Theory 43/ 47

Proof of Key Idea

• If an n-state DFA accepts a string w of length n or more, then
there must be a state that appears twice on the path labeled
w from the start state to a final state.

Note: Pigeonhole principle! ¨̂

• Because there are at least n + 1 states along the path.

x z

y

• Since y is not ε, we see an infinite number of strings in L of
the form xyiz for all i ≥ 0.

Mridul Aanjaneya Automata Theory 44/ 47

The Infiniteness Problem

• We do not have an algorithm yet.

• There are an infinite number of strings of length > n, and we
can’t test them all!

• Second Key Idea: If there is a string of length ≥ n, then
there is a string of length between n and 2n − 1.

Mridul Aanjaneya Automata Theory 45/ 47

Proof of Second Key Idea

• Remember:

x z

y

• We can choose y to be the first cycle on the path.

• So |xy | ≤ n; in particular, 1 ≤ |y | ≤ n.

• Thus, if w is of length 2n or more, there is a shorter string in
L that is still of length at least n.

• Keep shortening to reach [n,2n − 1].

Mridul Aanjaneya Automata Theory 46/ 47

Completion of Infiniteness Algorithm

• Test for membership all strings of length between [n,2n − 1].

If any are accepted, then infinite, else finite.

• A terrible algorithm!

• Better: find cycles between the start state and a final state.

• For finding cycles:
1 Eliminate states not reachable from the start state.
2 Eliminate states that do not reach a final state.
3 Test if the remaining transition graph has any cycles.

Mridul Aanjaneya Automata Theory 47/ 47

