Regular Expressions and Language Properties

Mridul Aanjaneya

July 3, 2012

Tentative Schedule

- HW \#1: Out (07/03), Due (07/11)
- HW \#2: Out (07/10), Due $(07 / 18)$
- HW \#3: Out (07/17), Due (07/25)
- Midterm: 07/31
- HW \#4: Out (07/31), Due (08/08)
- Tentative grades out by $08 / 12$.
- Final: ?

Epsilon Transitions: Extended transition function

- Basis: $\delta_{E}(\mathrm{q}, \varepsilon)=\mathrm{CL}(\mathrm{q})$.
- Induction: $\delta_{E}(\mathrm{q}, \mathrm{xa})$ is computed as follows:
(1) Start with $\delta_{E}(q, x)=S$.
(2) Take the union of $\operatorname{CL}(\delta(p, a))$ for all p in S.
- Intuition: $\delta_{E}(\mathrm{q}, \mathrm{w})$ is the set of states you can reach from q following a path labeled w with ε 's in between.

Equivalence of NFA, ε-NFA

- Compute $\delta_{N}(\mathrm{q}, \mathrm{a})$ as follows:
- Let $S=C L(q)$.
- $\delta_{N}(\mathrm{q}, \mathrm{a})$ is the union over all p in S of $\delta_{E}(\mathrm{p}, \mathrm{a})$.
- $\mathrm{F}^{\prime}=$ set of states q such that $\mathrm{CL}(\mathrm{q})$ contains a state of F .
- Intuition: δ_{N} incorporates ε-transitions before using a.
- Proof of equivalence is by induction on $|w|$ that $\operatorname{CL}\left(\delta_{N}\left(\mathrm{q}_{0}, \mathrm{w}\right)\right)=\delta_{E}\left(\mathrm{q}_{0}, \mathrm{w}\right)$.
- Basis: $\operatorname{CL}\left(\delta_{N}\left(\mathrm{q}_{0}, \varepsilon\right)\right)=\operatorname{CL}\left(\mathrm{q}_{0}\right)=\delta_{E}\left(\mathrm{q}_{0}, \varepsilon\right)$.
- Inductive step: Assume IH is true for all \times shorter than w.

Let $w=x a$.

- Then $\operatorname{CL}\left(\delta_{N}\left(\mathrm{q}_{0}, \mathrm{xa}\right)\right)=\operatorname{CL}\left(\delta_{E}\left(\operatorname{CL}\left(\delta_{N}\left(\mathrm{q}_{0}, \mathrm{x}\right)\right)\right.\right.$, a) $)$ (by definition).
- But from IH, $\operatorname{CL}\left(\delta_{N}\left(q_{0}, \mathrm{x}\right)\right)=\delta_{E}\left(\mathrm{q}_{0}, \mathrm{x}\right)$.
- Hence, $\operatorname{CL}\left(\delta_{N}\left(\mathrm{q}_{0}, \mathrm{w}\right)\right)=\operatorname{CL}\left(\delta_{E}\left(\delta_{E}\left(\mathrm{q}_{0}, \mathrm{x}\right), \mathrm{a}\right)\right)=\delta_{E}\left(\mathrm{q}_{0}, \mathrm{w}\right)$.

Example

Recap

- DFA's, NFA's and ε-NFA's all accept exactly the same set of languages: the regular languages.
- NFA types are easier to design and may have exponentially fewer states than a DFA.
- But only a DFA can be implemented!

Challenge Problem \#1

Question

Are such tilings always possible?

Challenge Problem \#2

Question

How many regions can you cut?

Regular Operators

- We define three regular operations on languages.

Definition

Let A and B be languages. We define the regular operations union, concatenation, and star as follows.

- Union: $\mathrm{A} \cup \mathrm{B}=\{x \mid x \in \mathrm{~A}$ or $x \in \mathrm{~B}\}$.
- Concatenation: $A \circ B=\{x y \mid x \in A$ and $y \in B\}$.
- Star: $A^{*}=\left\{x_{1} x_{2} \ldots x_{k} \mid k \geq 0\right.$ and each $\left.x_{i} \in A\right\}$.

Kleene Closure

Denoted as A^{*} and defined as the set of strings $x_{1} x_{2} \ldots x_{n}$, for some $n \geq 0$, where each x_{i} is in A.

- Note: When $n=0$, the string is ε.

Example

- Let $\Sigma=\{a, b, \ldots, z\}$. If $A=\{$ good,bad $\}$ and $B=\{$ boy,girl $\}$,
- $A \cup B=\{$ good,bad,boy,girl\},
- $A \circ B=\{$ goodboy,goodgirl,badboy,badgirl\},
- $A^{*}=\{\varepsilon$, good,bad,goodgood,goodbad,badgood,badbad,... $\}$,

Closure Properties: Union

Theorem

The class of regular languages is closed under the union operation, i.e., if A_{1} and A_{2} are regular languages, so is $A_{1} \cup A_{2}$.

Closure Properties: Concatenation

Theorem

The class of regular languages is closed under concatenation.

Closure Properties: Star

Theorem

The class of regular languages is closed under the star operation.

Regular Expressions

- Regular expressions describe languages algebraically.
- They describe exactly the regular languages.
- If E is a regular expression, then $L(E)$ is its language.
- We give a recursive definition of RE's and their languages.

Regular Expressions: Definition

(1) Basis: If a is any symbol, then a is a RE, and $L(a)=\{a\}$.

- Note: $\{a\}$ is the language containing one string, and that string is of length 1.
(2) Basis: ε is a RE, and $\mathrm{L}(\varepsilon)=\{\varepsilon\}$.
(3) Basis: \emptyset is a RE, and $L(\emptyset)=\emptyset$.

Regular Expressions: Definition

(1) Induction: If E_{1} and E_{2} are regular expressions, then $E_{1}+E_{2}$ is a regular expression, and $\mathrm{L}\left(\mathrm{E}_{1}+\mathrm{E}_{2}\right)=\mathrm{L}\left(\mathrm{E}_{1}\right) \cup \mathrm{L}\left(\mathrm{E}_{2}\right)$.
(2) Induction: If E_{1} and E_{2} are regular expressions, then $E_{1} E_{2}$ is a regular expression, and $L\left(\mathrm{E}_{1} \mathrm{E}_{2}\right)=\mathrm{L}\left(\mathrm{E}_{1}\right) \mathrm{L}\left(\mathrm{E}_{2}\right)$.
(3) Induction: If E is a regular expression, then E^{*} is a regular expression, and $L\left(E^{*}\right)=(L(E))^{*}$.

Precedence of operators

- Parentheses may be used wherever needed to influence the grouping of operators.
- Order of precedence is * (highest), then concatenation, then + (lowest).

Examples

- $L(01)=\{01\}$.
- $L(01+0)=\{01,0\}$.
- $L(0(1+0))=\{01,00\}$.
- Note: order of precedence.
- $L\left(0^{*}\right)=\{\varepsilon, 0,00,000, \ldots\}$
- $\mathrm{L}\left((0+10)^{*}(\varepsilon+1)\right)=$ all strings over $\{0,1\}$ without 11 's.

Algebraic Laws for Regular Expressions

- Union and concatenation behave sort of like addition and multiplication.
- + is commutative and associative.
- concatenation is associative.
- concatenation distributes over + .
- Exception: concatenation is not commutative.

Identities and Annihilators

- \emptyset is the identity for + .
- $R+\emptyset=R$.
- ε is the identity for concatenation.
- $\varepsilon R=R \varepsilon=R$
- \emptyset is the annihilator for concatenation.
- $\emptyset R=R \emptyset=\emptyset$.

Equivalence of Regular Expressions and Automata

- We need to show that for every regular expression, there is an automaton that accepts the same language.
- Pick the most powerful automaton type: ε-NFA.
- And we need to show that for every automaton, there is a regular expression defining its language.
- Pick the most restrictive type: the DFA.

Converting a RE to an ε-NFA

- Proof is an induction on the number of operators (+, concatenation, ${ }^{*}$) in the regular expression.
- We always construct an automaton of a special form (next slide).

RE to ε-NFA: Basis

- Symbol a:

- ε :

- $\emptyset:$

RE to ε-NFA: Induction (Union)

- For $E_{1} \cup E_{2}$

RE to ε-NFA: Induction (Concatenation)

- For $\mathrm{E}_{1} \mathrm{E}_{2}$

RE to ε-NFA: Induction (Star)

- For E*

DFA to RE

- A strange sort of induction.
- States of the DFA are assumed to be $1,2, \ldots, n$.
- We construct RE's for the labels of restricted sets of paths.
- Basis: single arcs or no arcs at all.
- Induction: paths that are allowed to traverse next state in order.

k-Paths

- A k-path is a path through the DFA that goes through no state numbered higher than k.
- End-points are not restricted, they can be any state.

k-Paths: Example

- 0-paths from 2 to 3: RE for labels $=0$
- 1-paths from 2 to 3: RE for labels $=0+11$
- 2-paths from 2 to $3:$ RE for labels $=(10)^{*} 0+1(01)^{*} 1$
- 3-paths from 2 to 3: RE for labels $=$??

k-Paths: Induction

- Let $R_{i j}^{k}$ be the RE for the set of labels of k-paths from state i to state j.
- Basis: $k=0 . R_{i j}^{0}=$ sum of labels of arcs from i to j.
- \emptyset is no such arc.
- But add ε if $\mathrm{i}=\mathrm{j}$.

- Example: $R_{12}^{0}=0, R_{11}^{0}=\emptyset+\varepsilon=\varepsilon$.

k-Paths: Inductive Step

- A k-path from i to j either:
(1) Never goes through state k, or
(2) Goes through state k one or more times.

$$
R_{i j}^{k}=R_{i j}^{k-1}+R_{i k}^{k-1}\left(R_{k k}^{k-1}\right)^{*} R_{k j}^{k-1}
$$

- The equivalent RE is the sum (union) of $R_{i j}^{n}$, where:
(1) n is the number of states, i.e., the paths are unconstrained.
(2) i is the start state.
(3) j is one of the final states.

Summary

- Each of the three types of automata (DFA, NFA, ε-NFA) we discussed, and regular expressions as well, define exactly the same set of languages: the regular languages.

Challenge Problem

Question

Can you find the shortest path from A to B ?

Properties of Language Classes

- A language class is a set of languages.
- We have seen one example: the regular languages.
- We'll see many more in the class.
- Language classes have two important kinds of properties:
(1) Decision properties
(2) Closure properties

Representation of Languages

- Representations can be formal or informal.
- Example (formal): represent a language by a DFA or RE defining it.
- Example (informal): a logical or prose statement about its strings:
- $\left\{0^{n} 1^{n} \mid n\right.$ is a nonnegative integer. $\}$
- The set of strings consisting of some number of 0's followed by the same number of 1's.

Decision Properties

- A decision property for a class of languages is an algorithm that takes a formal description of a language (e.g., a DFA) and tells whether or not some property holds.
- Example: Is language L empty?

Representation matters ...

- You might imagine that the language is described informally, so if my description is the empty language then yes, otherwise no.
- But the representation is a DFA (or a RE that you will convert to a DFA).
- Can you tell if $L(A)=\emptyset$ for a DFA A ?

Why Decision Properties?

- Remember that DFA's can represent protocols, and good protocols are related to the language of the DFA.
- Example: Does the protocol terminate? = Is the language finite?
- Example: Can the protocol fail? = Is the language nonempty?
- We might want a smallest representation for a language, e.g., a minimum-state DFA or a shortest RE.
- If you can't decide "Are these two languages the same?", i.e., do two DFA's define the same language - you can't find a "smallest"!

Closure Properties

- A closure property of a language class says that given languages in the class, an operator (e.g., union) produces another language in the same class.
- Example: We saw that regular languages are closed under union, concatenation and Kleene closure (star) operations.

Why Closure Properties?

- Helps construct representations.
- Helps show (informally described) languages not to be in the class.

The Membership Question

- Our first decision property is the question: "is the string w in regular language L?"
- Assume L is represented by a DFA A.
- Simulate the action of A on the sequence of input symbols forming w .

Question

What if L is not represented by a DFA?

- Use the circle of conversions:

$$
\mathrm{RE} \rightarrow \varepsilon \text {-NFA } \rightarrow \mathrm{NFA} \rightarrow \mathrm{DFA} \rightarrow \mathrm{RE}
$$

The Emptiness Problem

Question

Does a regular language L contain any string at all?

- Assume representation is a DFA.
- Compute the set of states reachable from the start state.
- If any final state is reachable, then yes, else no.

The Infiniteness Problem

Question

Is a given regular language L infinite?

- Start with a DFA for the language.
- Key idea: If the DFA has n states, and the language contains any string of length n or more, then the language is infinite.
- Otherwise, the language is surely finite.
- Limited to strings of length n or less.

Proof of Key Idea

- If an n-state DFA accepts a string w of length n or more, then there must be a state that appears twice on the path labeled w from the start state to a final state.
- Note: Pigeonhole principle! \because
- Because there are at least $n+1$ states along the path.

- Since y is not ε, we see an infinite number of strings in L of the form $x y y^{i} z$ for all $i \geq 0$.

The Infiniteness Problem

- We do not have an algorithm yet.
- There are an infinite number of strings of length $>n$, and we can't test them all!
- Second Key Idea: If there is a string of length $\geq n$, then there is a string of length between n and $2 n-1$.

Proof of Second Key Idea

- Remember:

- We can choose y to be the first cycle on the path.
- So $|x y| \leq n$; in particular, $1 \leq|y| \leq n$.
- Thus, if w is of length $2 n$ or more, there is a shorter string in L that is still of length at least n.
- Keep shortening to reach $[n, 2 n-1]$.

Completion of Infiniteness Algorithm

- Test for membership all strings of length between $[n, 2 n-1]$.
- If any are accepted, then infinite, else finite.
- A terrible algorithm!
- Better: find cycles between the start state and a final state.
- For finding cycles:
(1) Eliminate states not reachable from the start state.
(2) Eliminate states that do not reach a final state.
(3) Test if the remaining transition graph has any cycles.

