Nondeterminism and Epsilon Transitions

Mridul Aanjaneya

Stanford University

June 28, 2012

Challenge Problem

Question

Prove that any square with side length a power of 2, and one square removed, is tileable with L's.

Something to think about ...

Question

Are such tilings always possible?

Recap: Deterministic Finite Automata

Definition

A DFA is a 5-tuple $(Q, \Sigma, \delta_D, q_0, F)$ consisting of:

- A finite set of states Q,
- A set of input alphabets Σ,
- A transition function $\delta_D: Q \times \Sigma \rightarrow Q$,
- A start state q₀, and
- A set of accept states $F \subseteq Q$.

The transition function δ_D :

- Takes two arguments, a state q and an alphabet a.
- δ_D(q,a) = the state the DFA goes to when it is in state q and the alphabet a is received.

Recap: Graph representation of DFA's

- Nodes correspond to states.
- Arcs represent transition function.
 - Arc from state p to state q labeled by all those input symbols that have transitions from p to q.
- Incoming arrow from outside denotes start state.
- Accept states indicated by double circles.

• Accepts all binary strings without two consecutive 1's.

Recap: Transition table for DFA's

- A row for each state, a column for each alphabet.
- Accept states are starred.
- Arrow for the start state.

Definition

A DFA $M = (Q, \Sigma, \delta_D, q_0, F)$ accepts w if there exists a sequence of states r_0, r_1, \ldots, r_n in Q with three conditions:

• $r_0 = q_0$

•
$$\delta_D(r_i, w_{i+1}) = r_{i+1}$$
 for $i = 0, ..., n-1$, and

- Condition 1 says that M starts in the start state q₀.
- Condition 2 says that M follows δ_D between two states.
- Condition 3 says that last state is an accept state.
- We say that M recognizes L if $L = \{w \mid M \text{ accepts } w\}$.

Regular Languages: Examples

Example

Let $L=\{w\mid w\in\{0,1\}^* \text{ and } w, \text{ viewed as a binary integer, is divisible by 5.}\}$

Regular Languages: Examples

Example

Show that the language of all strings over $\{0, 1\}$ that do not contain a pair of 1's that are separated by an odd number of 0's is regular.

Regular Languages: Examples

Example

Show that the language of all strings over $\{0,1\}$ that contain an even number of 0's and 1's is regular.

Nondeterminism

- Deterministic finite automata can only be in one state at any point in time.
 - Recall the definition of the transition function δ_D .
- In contrast, nondeterministic finite automata (NFA's) can be in several states at once!
 - The transition function δ_N is a one-to-many function.

• This NFA recognizes strings in {0,1}* containing a 1 in the third position from the end.

		0	1
\rightarrow	q_1	q_1	q_1,q_2
	\mathbf{q}_2	q 3	q 3
	\mathbf{q}_3	q ₄	q 4
	q_4^*	q ₄	q 4

• q₁ is a nondeterministic state with a one-many transition on 1.

• Intuitively, the NFA always guesses right.

Nondeterministic Finite Automata

Example

An NFA that accepts all strings of the form 0^k where k is a multiple of 2 or 3.

Definition

An NFA is a 5-tuple $(Q, \Sigma, \delta_N, q_0, F)$ consisting of:

- A finite set of states Q,
- A set of input alphabets Σ,
- A transition function $\delta_N : Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$,
- A start state q₀, and
- A set of accept states F ⊆ Q.
- Here, Σ_{ε} denotes the set $\Sigma \cup \{\varepsilon\}$.
- $\mathcal{P}(Q)$ denotes the power set of Q.

- $\delta_N(q,a)$ is a set of states.
- Extend to strings as follows:
 - Basis: $\delta_N(q,\varepsilon) = q$
 - Induction: $\delta_N(q,wa) =$ the union over all states of $\delta_N(p,a)$, where $p \in \delta_N(q,w)$.
- A string is accepted by an NFA if δ_N(q₀,w) contains at least one state p ⊆ F.
- The language of an NFA is the set of strings it accepts.

- Every DFA is also an NFA by definition.
 - There is simply no nondeterminism.
- Surprisingly, for every NFA, there is also an equivalent DFA!
 - Two equivalent machines recognize the same language.
 - Nonintuitive, as we'd expect NFA's to be more powerful.
 - Useful, as describing an NFA is much simpler.
- Proof is the subset construction.
- The number of states of the DFA can be exponential in the number of states of the NFA.
- Thus, NFA's accept exactly the regular languages.

Equivalence of DFA's and NFA's

• DFA for recognizing strings with a 1 in the third last position.

- Given an NFA $(Q, \Sigma, \delta_N, q_0, F)$, construct equivalent DFA with:
 - States $\mathcal{P}(Q)$ (set of subsets of Q).
 - Inputs Σ.
 - Start state $\{q_0\}$.
 - Final states = all those with a member of F.

Note:

- The DFA states have names that are sets of NFA states.
- But as a DFA state, an expression like {p,q} must be read as a single symbol.

• **Example:** We'll construct the DFA for the following NFA which recognizes strings in $\{0,1\}^*$ containing a 1 in the second position from the end.

Subset construction

- Show by induction on length of w that $\delta_N(q_0,w) = \delta_D(\{q_0\},w)$
- Basis: $\mathbf{w} = \varepsilon$. $\delta_N(\mathbf{q}_0, \varepsilon) = \delta_D(\{\mathbf{q}_0\}, \varepsilon) = \{\mathbf{q}_0\}$.
- Inductive step: Assume IH is true for all strings shorter than
 w. Let w = xa, then IH is true for x.
 - Let $\delta_N(q_0,x) = \delta_D(\{q_0\},x) = S$.
 - Let T = the union over all states p in S of $\delta_N(p,a)$.
 - Then $\delta_N(q_0,w) = \delta_D(\{q_0\},w) = T$ (by definition).

NFA's with ε -transitions

- State-to-state transitions on ε input.
- These transitions are spontaneous, and do not consider the input string.

Closure of States

 CL(q) = set of states that can be reached from state q following only arcs labeled ε.

- $CL(A) = \{A\}, CL(E) = \{B, C, D, E\}.$
- Closure of set of states = union of closure of each state.

- Basis: $\delta_E(q,\varepsilon) = CL(q)$.
- Induction: $\delta_E(q,xa)$ is computed as follows:
 - Start with $\delta_E(q,x) = S$.
 - 2 Take the union of $CL(\delta(p,a))$ for all p in S.
- Intuition: δ_E(q,w) is the set of states you can reach from q following a path labeled w with ε's in between.

24/30

Example: Extended transition function

- $\delta_{E}(\mathsf{A},\varepsilon) = \mathsf{CL}(\mathsf{A}) = \{\mathsf{A}\}.$
- $\delta_E(A,0) = CL(E) = \{B, C, D, E\}.$
- $\delta_E(A,01) = CL(C,D) = \{C, D\}.$

Example: Extended transition function

• Language of an ε -NFA is the set of strings w such that $\delta_E(q_0, w)$ contains a final state.

- Every NFA is an ε -NFA.
 - It just has no ε -transitions.
- Converse requires us to take an ε-NFA and construct an NFA that accepts the same language.
- This is done by combining ε-transitions with the next transition on a real input.
- Start with an ε-NFA (Q,Σ,q₀,F,δ_E) and construct an ordinary NFA (Q,Σ,q₀,F',δ_N).

Equivalence of NFA, ε -NFA

- Compute $\delta_N(q,a)$ as follows:
 - Let S = CL(q).
 - $\delta_N(q,a)$ is the union over all p in S of $\delta_E(p,a)$.
- F' = set of states q such that CL(q) contains a state of F.
- Intuition: δ_N incorporates ε -transitions before using a.
- Proof of equivalence is by induction on |w| that $CL(\delta_N(q_0,w)) = \delta_E(q_0,w).$
- **Basis:** $CL(\delta_N(q_0,\varepsilon)) = CL(q_0) = \delta_E(q_0,\varepsilon).$
- Inductive step: Assume IH is true for all x shorter than w. Let w = xa.
 - Then $CL(\delta_N(q_0,x_a)) = CL(\delta_E(CL(\delta_N(q_0,x)),a))$ (by definition).
 - But from **IH**, $CL(\delta_N(q_0,x)) = \delta_E(q_0,x)$.
 - Hence, $CL(\delta_N(q_0,w)) = CL(\delta_E(\delta_E(q_0,x),a)) = \delta_E(q_0,w).$

Example

- DFA's, NFA's and ε-NFA's all accept exactly the same set of languages: the regular languages.
- NFA types are easier to design and may have exponentially fewer states than a DFA.
- But only a DFA can be implemented!