
Nondeterminism and Epsilon Transitions

Mridul Aanjaneya

Stanford University

June 28, 2012

Mridul Aanjaneya Automata Theory 1/ 30



Challenge Problem

Question

Prove that any square with side length a power of 2, and one square
removed, is tileable with L’s.
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Something to think about ...

Question

Are such tilings always possible?
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Recap: Deterministic Finite Automata

Definition

A DFA is a 5-tuple (Q,Σ, δD , q0,F ) consisting of:

• A finite set of states Q,

• A set of input alphabets Σ,

• A transition function δD : Q × Σ→ Q,

• A start state q0, and

• A set of accept states F ⊆ Q.

The transition function δD :

• Takes two arguments, a state q and an alphabet a.

• δD(q,a) = the state the DFA goes to when it is in state q and
the alphabet a is received.
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Recap: Graph representation of DFA’s

• Nodes correspond to states.

• Arcs represent transition function.

Arc from state p to state q labeled by all those input symbols
that have transitions from p to q.

• Incoming arrow from outside denotes start state.

• Accept states indicated by double circles.
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• Accepts all binary strings without two consecutive 1’s.
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Recap: Transition table for DFA’s

0 1
→ q∗1 q1 q2

q∗2 q1 q3

q3 q3 q3

• A row for each state, a column for each alphabet.

• Accept states are starred.

• Arrow for the start state.
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Recap: Regular languages

Definition

A DFA M = (Q,Σ, δD , q0,F ) accepts w if there exists a sequence
of states r0, r1, . . . , rn in Q with three conditions:

• r0 = q0

• δD(ri ,wi+1) = ri+1 for i = 0, . . . , n − 1, and

• rn ∈ F

• Condition 1 says that M starts in the start state q0.

• Condition 2 says that M follows δD between two states.

• Condition 3 says that last state is an accept state.

• We say that M recognizes L if L = {w | M accepts w}.
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Regular Languages: Examples

Example

Let L = {w | w ∈ {0,1}∗ and w, viewed as a binary integer, is
divisible by 5.}
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Regular Languages: Examples

Example

Show that the language of all strings over {0, 1} that do not contain
a pair of 1’s that are separated by an odd number of 0’s is regular.

1
a
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Regular Languages: Examples

Example

Show that the language of all strings over {0, 1} that contain an
even number of 0’s and 1’s is regular.

0 00 0

1

1

1

1

oo

ee

oe

eo
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Nondeterminism

• Deterministic finite automata can only be in one state at any
point in time.

Recall the definition of the transition function δD .

• In contrast, nondeterministic finite automata (NFA’s) can be
in several states at once!

The transition function δN is a one-to-many function.

q
1

q q q
2 3 4

1

0,1
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• This NFA recognizes strings in {0,1}∗ containing a 1 in the
third position from the end.
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Transition table

0 1
→ q1 q1 q1,q2

q2 q3 q3

q3 q4 q4

q∗4 q4 q4

• q1 is a nondeterministic state with a one-many transition on 1.

q
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q q q
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• Intuitively, the NFA always guesses right.
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Nondeterministic Finite Automata

Example

An NFA that accepts all strings of the form 0k where k is a multiple
of 2 or 3.
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Nondeterministic Finite Automata

Definition

An NFA is a 5-tuple (Q,Σ, δN , q0,F ) consisting of:

• A finite set of states Q,

• A set of input alphabets Σ,

• A transition function δN : Q × Σε → P(Q),

• A start state q0, and

• A set of accept states F ⊆ Q.

• Here, Σε denotes the set Σ ∪ {ε}.
• P(Q) denotes the power set of Q.
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Transition function of an NFA

• δN(q,a) is a set of states.

• Extend to strings as follows:

Basis: δN(q,ε) = q
Induction: δN(q,wa) = the union over all states of δN(p,a),
where p ∈ δN(q,w).

• A string is accepted by an NFA if δN(q0,w) contains at least
one state p ⊆ F.

• The language of an NFA is the set of strings it accepts.
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Equivalence of DFA’s and NFA’s

• Every DFA is also an NFA by definition.

There is simply no nondeterminism.

• Surprisingly, for every NFA, there is also an equivalent DFA!

Two equivalent machines recognize the same language.
Nonintuitive, as we’d expect NFA’s to be more powerful.
Useful, as describing an NFA is much simpler.

• Proof is the subset construction.

• The number of states of the DFA can be exponential in the
number of states of the NFA.

• Thus, NFA’s accept exactly the regular languages.
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Equivalence of DFA’s and NFA’s

• DFA for recognizing strings with a 1 in the third last position.
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Subset construction

• Given an NFA (Q,Σ,δN ,q0,F ), construct equivalent DFA with:

States P(Q) (set of subsets of Q).
Inputs Σ.
Start state {q0}.
Final states = all those with a member of F .

Note:

• The DFA states have names that are sets of NFA states.

• But as a DFA state, an expression like {p,q} must be read as
a single symbol.
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Subset construction

• Example: We’ll construct the DFA for the following NFA
which recognizes strings in {0,1}∗ containing a 1 in the
second position from the end.

1

0,1

0,1
a b c
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Subset construction
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Proof of equivalence: subset construction

• Show by induction on length of w that
δN(q0,w) = δD({q0},w)

• Basis: w = ε. δN(q0,ε) = δD({q0},ε) = {q0}.
• Inductive step: Assume IH is true for all strings shorter than

w. Let w = xa, then IH is true for x.

Let δN(q0,x) = δD({q0},x) = S.
Let T = the union over all states p in S of δN(p,a).
Then δN(q0,w) = δD({q0},w) = T (by definition).

Mridul Aanjaneya Automata Theory 21/ 30



NFA’s with ε-transitions

• State-to-state transitions on ε input.

• These transitions are spontaneous, and do not consider the
input string.
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Closure of States

• CL(q) = set of states that can be reached from state q
following only arcs labeled ε.
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• CL(A) = {A}, CL(E) = {B, C, D, E}.
• Closure of set of states = union of closure of each state.
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Extended transition function

• Basis: δE (q,ε) = CL(q).

• Induction: δE (q,xa) is computed as follows:
1 Start with δE (q,x) = S.
2 Take the union of CL(δ(p,a)) for all p in S.

• Intuition: δE (q,w) is the set of states you can reach from q
following a path labeled w with ε’s in between.
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Example: Extended transition function
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• δE (A,ε) = CL(A) = {A}.
• δE (A,0) = CL(E) = {B, C, D, E}.
• δE (A,01) = CL(C,D) = {C, D}.
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Example: Extended transition function
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• Language of an ε-NFA is the set of strings w such that
δE (q0,w) contains a final state.
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Equivalence of NFA, ε-NFA

• Every NFA is an ε-NFA.

It just has no ε-transitions.

• Converse requires us to take an ε-NFA and construct an NFA
that accepts the same language.

• This is done by combining ε-transitions with the next
transition on a real input.

• Start with an ε-NFA (Q,Σ,q0,F,δE ) and construct an ordinary
NFA (Q,Σ,q0,F’,δN).
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Equivalence of NFA, ε-NFA

• Compute δN(q,a) as follows:

Let S = CL(q).
δN(q,a) is the union over all p in S of δE (p,a).

• F’ = set of states q such that CL(q) contains a state of F.

• Intuition: δN incorporates ε-transitions before using a.

• Proof of equivalence is by induction on |w| that
CL(δN(q0,w)) = δE (q0,w).

• Basis: CL(δN(q0,ε)) = CL(q0) = δE (q0,ε).

• Inductive step: Assume IH is true for all x shorter than w.
Let w = xa.

Then CL(δN(q0,xa)) = CL(δE (CL(δN(q0,x)),a)) (by definition).
But from IH, CL(δN(q0,x)) = δE (q0,x).
Hence, CL(δN(q0,w)) = CL(δE (δE (q0,x),a)) = δE (q0,w).
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Example
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Summary

• DFA’s, NFA’s and ε-NFA’s all accept exactly the same set of
languages: the regular languages.

• NFA types are easier to design and may have exponentially
fewer states than a DFA.

• But only a DFA can be implemented!
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