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Time-Bounded Turing Machines

• A Turing Machine that, given an input of length n, always
halts within T(n) moves is said to be T(n)-time bounded.

The TM can be multitape.
Sometimes, it can be nondeterministic.

• The deterministic, multitape case corresponds roughly to an
O(T(n)) running-time algorithm.
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The class P

• If a DTM M is T(n)-time bounded for some polynomial T(n),
then we say M is polynomial-time (polytime) bounded.

• And L(M) is said to be in the class P.

• Important Point: When we talk of P, it doesn’t matter
whether we mean by a computer or by a TM.
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Polynomial Equivalence of Computers and TM’s

• A multitape TM can simulate a computer that runs for time
O(T(n)) in at most O(T2(n)) of its own steps.

• If T(n) is a polynomial, so is T2(n).
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Examples of Problems in P

• Is w in L(G), for a given CFG G?

Input w.
Use CYK algorithm, which is O(n3).

• Is there a path from node x to node y in graph G?

Input = x, y, and G.
Use Dijkstra’s algorithm, which is O(n log n) on a graph of n
nodes and arcs.

Mridul Aanjaneya Automata Theory 5/ 49



Running Times Between Polynomials

• You might worry that something like O(n log n) is not a
polynomial.

• However, to be in P, a problem only needs an algorithm that
runs in time less than some polynomial.

• Surely O(n log n) is less than the polynomial O(n2).
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A Tricky Case: Knapsack

• The Knapsack problem is: given positive integers i1, i2,. . ., in,
can we divide them in two sets with equal sums?

• Perhaps we can solve this problem in polytime by a
dynamic-programming algorithm:

Maintain a table of all the differences we can achieve by
partitioning the first j integers.
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Knapsack

• Basis: j=0. Initially, the table has true for 0 and false for all
other differences.

• Induction: To consider ij , start with a new table initially all
false.

• Then set k to true if, in the old table, there is a value m that
was true, and k is either m+ij or m-ij .
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Knapsack

• Suppose we measure running time in terms of the sum of the
integers, say m.

• Each table only needs space O(m) to represent all the positive
and negative differences we could achieve.

• Each table can be constructed in time O(n).
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Knapsack

• Since n ≤ m, we can build the final table in O(m2) time.

• From that table, we can see if 0 is achievable and solve the
problem.
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Subtlety: Measuring Input Size

• Input size has a specific meaning: the length of the
representation of the problem as it is input to a TM.

• For the Knapsack problem, you cannot always write the input
in a number of characters that is polynomial in either the
number of or sum of the integers.
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Knapsack - Bad Case

• Suppose we have n integers, each of which is around 2n.

• We can write integers in binary, so the input takes O(n2)
space to write down.

• But the tables require space O(n2n).

• They therefore require at least that order of time to construct.
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Bad Case

• Thus, the proposed polynomial algorithm actually takes time
O(n22n) on an input of length O(n2).

• Or, since we like to use n as the input size, it takes time
O(n2sqrt(n)) on an input of length n.

• In fact, it appears no algorithm solves Knapsack in polynomial
time.
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Redefining Knapsack

• We are free to describe another problem, call it
Pseudo-Knapsack, where integers are represented unary.

• Pseudo-Knapsack is in P.
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The class NP

• The running time of a nondeterministic TM is the maximum
number of steps taken along any branch.

• If that time bound is polynomial, the NTM is said to be
polynomial-time bounded.

• And its language/problem is said to be in the class NP.
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Example: NP

• The Knapsack problem is definitely in NP, even using the
conventional binary representation of integers.

• Use nondeterminism to guess one of the subsets.

• Sum the two subsets and compare.
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P versus NP

• Originally a curiosity of Computer Science, mathematicians
now recognize as one of the most important open problems
the question P = NP?

• There are thousands of problems that are in NP but appear
not to be in P.

• But no proof that they aren’t really in P.
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Complete Problems

• One way to address the P = NP question is to identify
complete problems for NP.

• An NP-complete problem has the property that if it is in P,
then every problem in NP is also in P.

• Defined formally via polytime reductions.
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Complete Problems: Intuition

• A complete problem for a class embodies every problem in the
class, even if it does not appear so.

• Strange but true: Knapsack embodies every polytime NTM
computation.
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Polytime Reductions

• Goal: Find a way to show problem X to be NP-complete by
reducing every language/problem in NP to X in such a way
that if we had a deterministic polynomial time algorithm for
X , then we could construct a deterministic polynomial time
algorithm for any problem in NP.
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Polytime Reductions

• We need the notion of a polytime transducer - a TM that:
1 Takes an input of length n.
2 Operates deterministically for some polynomial time p(n).
3 Produces an output on a separate output tape.

• Note: output length is at most p(n).
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Polytime Reductions

• Let L and M be languages.

• Say L is polytime reducible to M if there is a polytime
transducer T such that for every input w to T, the output x =
T(w) ∈ M if and only if w ∈ L.
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Picture of Polytime Reductions
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NP-complete Problems

• A problem/language M is said to be NP-complete if for every
language L ∈ NP, there is a polytime reduction from L to M.

• Fundamental Property: If M has a polytime algorithm, then
L also has a polytime algorithm.

i.e., if M ∈ P, then every L ∈ NP is also in P, or P = NP.
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Proof that Polytime Reductions Work

• Suppose M has an algorithm of polynomial time q(n).

• Let L have a polytime transducer T to M, taking polynomial
time p(n).

• The output of T, given an input of length n, is at most of
length p(n).

• The algorithm for M on the output of T takes time at most
q(p(n)).
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Proof that Polytime Reductions Work

• We now have a polytime algorithm for L:
1 Given w of length n, use T to produce x of length ≤ p(n),

taking time ≤ p(n).
2 Use the algorithm for M to tell if x ∈ M in time ≤ q(p(n)).
3 Answer for w is whatever the answer for x is.

• Total time ≤ p(n) + q(p(n)) = a polynomial.
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Boolean Expressions

• Boolean, or propositional-logic expressions are built from
variables and constants using the operators AND, OR, and
NOT.

Constants are true and false, represented by 1 and 0,
respectively.
We’ll use concatenation for AND, + for OR, - for NOT.
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Example: Boolean Expressions

• (x + y)(-x + -y) is true only when variables x and y have
opposite truth values.

• Note: parentheses can be used at will, and are needed to
modify the precendence order NOT (highest), AND, OR.
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The Satisfiability Problem (SAT)

• Study of boolean functions generally is concerned with the set
of truth assignments (assignments of 0 or 1 to each of the
variables) that make the function true.

• NP-completeness needs only a simpler question (SAT): does
there exist a truth assignment making the function true?
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Example: SAT

• (x + y)(-x + -y) is satisfiable.

• There are, in fact, two satisfying truth assignments:
1 x=0; y=1.
2 x=1; y=0.

• x(-x) is not satisfiable.
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SAT is in NP

• There is a multitape NTM that can decide if a Boolean
formula of length n is satisfiable.

• The NTM takes O(n2) time along any path.

• Use nondeterminism to guess a truth assignment on a second
tape.

• Replace all variables by guessed truth values.

• Evaluate the formula for this assignment.

• Accept if true.

Cook’s Theorem

SAT is NP-complete.
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Picture so far

• We have one NP-complete problem: SAT.

• In the future, we shall do polytime reductions of SAT to other
problems, thereby showing them to be NP-complete.

• Why? If we polytime reduce SAT to X , and X ∈ P, then so
is SAT, and therefore so is all of NP.
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Conjunctive Normal Form

• A Boolean formula is in Conjunctive Normal Form (CNF) if it
is the AND of clauses.

• Each clause if the OR of literals.

• Each literal if either a variable or the negation of a variable.

CSAT

Is a boolean formula in CNF satisfiable?
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NP-completeness of CSAT

• You can convert any formula to CNF.

• If may exponentiate the size of the formula and therefore take
time to write down that is exponential in the size of the
original formula, but these numbers are all fixed for a given
NTM M and independent of n.
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k-SAT

• If a boolean formula is in CNF and every clause consists of
exactly k literals, we say that the boolean formula is an
instance of k-SAT.

Say the formula is in k-CNF.

• Example: 3-SAT formula:

(x + y + z)(x + -y + z)(x + y + -z)(x + -y + -z)
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k-SAT Facts

• Every boolean formula has an equivalent CNF formula.

But the size of the CNF formula may be exponential in the
size of the original.

• Not every boolean formula has a k-SAT equivalent.

• 2-SAT is in P, 3-SAT is NP-complete.
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Proof: 2-SAT is in P (sketch)

• Pick an assignment for some variable, say x = true.

• Any clause with -x forces the other literal to be true.

Example: (-x + -y) forces y to be false.

• Keep seeing what other truth values are forced by variables
with known truth values.
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Proof: 2-SAT is in P (sketch)

• One of three things can happen:
1 You reach a contradiction (e.g., z is forced to be both true and

false).
2 You reach a point where no more variables have their truth

value forced, but some clauses are not yet made true.
3 You reach a satisfying truth assignment.
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Proof: 2-SAT is in P (sketch)

• Case 1: (Contradition) There can be only a satisfying
assignment if you use the other truth value for x.

Simplify the formula by replacing x by this truth value and
repeat the process.

• Case 3: You found a satisfying assignment, so answer yes.
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Proof: 2-SAT is in P (sketch)

• Case 2: (You force values for some variables, but other
variables and clauses are not affected.)

Adopt these truth values, eliminate the clauses that they
satisfy, and repeat.

• In cases 1 and 2 you have spend O(n2) time and have reduced
the length of the formula by ≥ 1, so O(n3) total.

Mridul Aanjaneya Automata Theory 41/ 49



3-SAT

• This problem is NP-complete.

• Clearly it is in NP, since SAT is.

• It is not true that every boolean formula can be converted to
an equivalent 3-CNF formula, even if we exponentiate the size
of the formula.
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3-SAT

• But we don’t need equivalence.

• We need to reduce every CNF formula F to some 3-CNF
formula that is satisfiable if and only if F is.

• Reduction involves introducing new variables into long
clauses, so that we can split them apart.
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Reduction of CSAT to 3-SAT

• Let (x1 + x2 +. . .+ xn) be a clause in some CSAT instance,
with n ≥ 4.

Note: the x’s are literals, not variables; any of them could be
negated variables.

• Introduce new variables y1,. . .,yn−3 that appear in no other
clause.
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Reduction of CSAT to 3-SAT

• Replace (x1 + x2 +. . .+ xn) by (x1+x2+y1)(x3+y2+ -y1). . .
(xn−2+yn−3+ -yn−4)(xn−1+xn+ -yn−3).

• If there is a satisfying assignment of the x’s for the CSAT
instance, then one of the literals xi must be made true.

• Assign yi = true if j < i-1 and yj = false for larger j.
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Reduction of CSAT to 3-SAT

• We are not done.

• We also need to show that if the resulting 3SAT instance is
satisfiable, then the original CSAT instance was satisfiable.
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Reduction of CSAT to 3-SAT

• Suppose (x1+x2+y1)(x3+y2+ -y1). . . (xn−2+yn−3+
-yn−4)(xn−1+xn+ -yn−3) is satisfiable, but none of the x’s is
true.

• The first clause forces y1 = true.

• Then the second clause forces y2 = true.

• And so on . . . all the y’s must be true.

• But then the last clause is false.
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Reduction of CSAT to 3-SAT

• There is a little more to the reduction, for handling clauses of
1 or 2 literals.

• Replace (x) by (x+y1+y2)(x+y1+ -y2)(x+ -y1+y2)(x+ -y2+
-y2).

• Replace (w+x) by (w+x+y)(w+x+ -y).
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CSAT to 3-SAT Running Time

• This reduction is surely polynomial.

• In fact, it is linear in the length of the CSAT instance.

• Thus, we have polytime-reduced CSAT to 3-SAT.

• Since CSAT is NP-complete, so is 3-SAT.
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