
NP-Completeness and Boolean Satisfiability

Mridul Aanjaneya

Stanford University

August 14, 2012

Mridul Aanjaneya Automata Theory 1/ 49



Time-Bounded Turing Machines

• A Turing Machine that, given an input of length n, always
halts within T(n) moves is said to be T(n)-time bounded.

The TM can be multitape.
Sometimes, it can be nondeterministic.

• The deterministic, multitape case corresponds roughly to an
O(T(n)) running-time algorithm.

Mridul Aanjaneya Automata Theory 2/ 49



The class P

• If a DTM M is T(n)-time bounded for some polynomial T(n),
then we say M is polynomial-time (polytime) bounded.

• And L(M) is said to be in the class P.

• Important Point: When we talk of P, it doesn’t matter
whether we mean by a computer or by a TM.

Mridul Aanjaneya Automata Theory 3/ 49



Polynomial Equivalence of Computers and TM’s

• A multitape TM can simulate a computer that runs for time
O(T(n)) in at most O(T2(n)) of its own steps.

• If T(n) is a polynomial, so is T2(n).

Mridul Aanjaneya Automata Theory 4/ 49



Examples of Problems in P

• Is w in L(G), for a given CFG G?

Input w.
Use CYK algorithm, which is O(n3).

• Is there a path from node x to node y in graph G?

Input = x, y, and G.
Use Dijkstra’s algorithm, which is O(n log n) on a graph of n
nodes and arcs.

Mridul Aanjaneya Automata Theory 5/ 49



Running Times Between Polynomials

• You might worry that something like O(n log n) is not a
polynomial.

• However, to be in P, a problem only needs an algorithm that
runs in time less than some polynomial.

• Surely O(n log n) is less than the polynomial O(n2).

Mridul Aanjaneya Automata Theory 6/ 49



A Tricky Case: Knapsack

• The Knapsack problem is: given positive integers i1, i2,. . ., in,
can we divide them in two sets with equal sums?

• Perhaps we can solve this problem in polytime by a
dynamic-programming algorithm:

Maintain a table of all the differences we can achieve by
partitioning the first j integers.

Mridul Aanjaneya Automata Theory 7/ 49



Knapsack

• Basis: j=0. Initially, the table has true for 0 and false for all
other differences.

• Induction: To consider ij , start with a new table initially all
false.

• Then set k to true if, in the old table, there is a value m that
was true, and k is either m+ij or m-ij .

Mridul Aanjaneya Automata Theory 8/ 49



Knapsack

• Suppose we measure running time in terms of the sum of the
integers, say m.

• Each table only needs space O(m) to represent all the positive
and negative differences we could achieve.

• Each table can be constructed in time O(n).

Mridul Aanjaneya Automata Theory 9/ 49



Knapsack

• Since n ≤ m, we can build the final table in O(m2) time.

• From that table, we can see if 0 is achievable and solve the
problem.

Mridul Aanjaneya Automata Theory 10/ 49



Subtlety: Measuring Input Size

• Input size has a specific meaning: the length of the
representation of the problem as it is input to a TM.

• For the Knapsack problem, you cannot always write the input
in a number of characters that is polynomial in either the
number of or sum of the integers.

Mridul Aanjaneya Automata Theory 11/ 49



Knapsack - Bad Case

• Suppose we have n integers, each of which is around 2n.

• We can write integers in binary, so the input takes O(n2)
space to write down.

• But the tables require space O(n2n).

• They therefore require at least that order of time to construct.

Mridul Aanjaneya Automata Theory 12/ 49



Bad Case

• Thus, the proposed polynomial algorithm actually takes time
O(n22n) on an input of length O(n2).

• Or, since we like to use n as the input size, it takes time
O(n2sqrt(n)) on an input of length n.

• In fact, it appears no algorithm solves Knapsack in polynomial
time.

Mridul Aanjaneya Automata Theory 13/ 49



Redefining Knapsack

• We are free to describe another problem, call it
Pseudo-Knapsack, where integers are represented unary.

• Pseudo-Knapsack is in P.

Mridul Aanjaneya Automata Theory 14/ 49



The class NP

• The running time of a nondeterministic TM is the maximum
number of steps taken along any branch.

• If that time bound is polynomial, the NTM is said to be
polynomial-time bounded.

• And its language/problem is said to be in the class NP.

Mridul Aanjaneya Automata Theory 15/ 49



Example: NP

• The Knapsack problem is definitely in NP, even using the
conventional binary representation of integers.

• Use nondeterminism to guess one of the subsets.

• Sum the two subsets and compare.

Mridul Aanjaneya Automata Theory 16/ 49



P versus NP

• Originally a curiosity of Computer Science, mathematicians
now recognize as one of the most important open problems
the question P = NP?

• There are thousands of problems that are in NP but appear
not to be in P.

• But no proof that they aren’t really in P.

Mridul Aanjaneya Automata Theory 17/ 49



Complete Problems

• One way to address the P = NP question is to identify
complete problems for NP.

• An NP-complete problem has the property that if it is in P,
then every problem in NP is also in P.

• Defined formally via polytime reductions.

Mridul Aanjaneya Automata Theory 18/ 49



Complete Problems: Intuition

• A complete problem for a class embodies every problem in the
class, even if it does not appear so.

• Strange but true: Knapsack embodies every polytime NTM
computation.

Mridul Aanjaneya Automata Theory 19/ 49



Polytime Reductions

• Goal: Find a way to show problem X to be NP-complete by
reducing every language/problem in NP to X in such a way
that if we had a deterministic polynomial time algorithm for
X , then we could construct a deterministic polynomial time
algorithm for any problem in NP.

Mridul Aanjaneya Automata Theory 20/ 49



Polytime Reductions

• We need the notion of a polytime transducer - a TM that:
1 Takes an input of length n.
2 Operates deterministically for some polynomial time p(n).
3 Produces an output on a separate output tape.

• Note: output length is at most p(n).

Mridul Aanjaneya Automata Theory 21/ 49



Polytime Reductions

input

scratch
tapes

output

n

<= p(n)

State

Mridul Aanjaneya Automata Theory 22/ 49



Polytime Reductions

• Let L and M be languages.

• Say L is polytime reducible to M if there is a polytime
transducer T such that for every input w to T, the output x =
T(w) ∈ M if and only if w ∈ L.

Mridul Aanjaneya Automata Theory 23/ 49



Picture of Polytime Reductions

in L

not

in L

in M

not in M

T

Mridul Aanjaneya Automata Theory 24/ 49



NP-complete Problems

• A problem/language M is said to be NP-complete if for every
language L ∈ NP, there is a polytime reduction from L to M.

• Fundamental Property: If M has a polytime algorithm, then
L also has a polytime algorithm.

i.e., if M ∈ P, then every L ∈ NP is also in P, or P = NP.

Mridul Aanjaneya Automata Theory 25/ 49



Proof that Polytime Reductions Work

• Suppose M has an algorithm of polynomial time q(n).

• Let L have a polytime transducer T to M, taking polynomial
time p(n).

• The output of T, given an input of length n, is at most of
length p(n).

• The algorithm for M on the output of T takes time at most
q(p(n)).

Mridul Aanjaneya Automata Theory 26/ 49



Proof that Polytime Reductions Work

• We now have a polytime algorithm for L:
1 Given w of length n, use T to produce x of length ≤ p(n),

taking time ≤ p(n).
2 Use the algorithm for M to tell if x ∈ M in time ≤ q(p(n)).
3 Answer for w is whatever the answer for x is.

• Total time ≤ p(n) + q(p(n)) = a polynomial.

Mridul Aanjaneya Automata Theory 27/ 49



Boolean Expressions

• Boolean, or propositional-logic expressions are built from
variables and constants using the operators AND, OR, and
NOT.

Constants are true and false, represented by 1 and 0,
respectively.
We’ll use concatenation for AND, + for OR, - for NOT.

Mridul Aanjaneya Automata Theory 28/ 49



Example: Boolean Expressions

• (x + y)(-x + -y) is true only when variables x and y have
opposite truth values.

• Note: parentheses can be used at will, and are needed to
modify the precendence order NOT (highest), AND, OR.

Mridul Aanjaneya Automata Theory 29/ 49



The Satisfiability Problem (SAT)

• Study of boolean functions generally is concerned with the set
of truth assignments (assignments of 0 or 1 to each of the
variables) that make the function true.

• NP-completeness needs only a simpler question (SAT): does
there exist a truth assignment making the function true?

Mridul Aanjaneya Automata Theory 30/ 49



Example: SAT

• (x + y)(-x + -y) is satisfiable.

• There are, in fact, two satisfying truth assignments:
1 x=0; y=1.
2 x=1; y=0.

• x(-x) is not satisfiable.

Mridul Aanjaneya Automata Theory 31/ 49



SAT is in NP

• There is a multitape NTM that can decide if a Boolean
formula of length n is satisfiable.

• The NTM takes O(n2) time along any path.

• Use nondeterminism to guess a truth assignment on a second
tape.

• Replace all variables by guessed truth values.

• Evaluate the formula for this assignment.

• Accept if true.

Cook’s Theorem

SAT is NP-complete.

Mridul Aanjaneya Automata Theory 32/ 49



Picture so far

• We have one NP-complete problem: SAT.

• In the future, we shall do polytime reductions of SAT to other
problems, thereby showing them to be NP-complete.

• Why? If we polytime reduce SAT to X , and X ∈ P, then so
is SAT, and therefore so is all of NP.

Mridul Aanjaneya Automata Theory 33/ 49



Conjunctive Normal Form

• A Boolean formula is in Conjunctive Normal Form (CNF) if it
is the AND of clauses.

• Each clause if the OR of literals.

• Each literal if either a variable or the negation of a variable.

CSAT

Is a boolean formula in CNF satisfiable?

Mridul Aanjaneya Automata Theory 34/ 49



NP-completeness of CSAT

• You can convert any formula to CNF.

• If may exponentiate the size of the formula and therefore take
time to write down that is exponential in the size of the
original formula, but these numbers are all fixed for a given
NTM M and independent of n.

Mridul Aanjaneya Automata Theory 35/ 49



k-SAT

• If a boolean formula is in CNF and every clause consists of
exactly k literals, we say that the boolean formula is an
instance of k-SAT.

Say the formula is in k-CNF.

• Example: 3-SAT formula:

(x + y + z)(x + -y + z)(x + y + -z)(x + -y + -z)

Mridul Aanjaneya Automata Theory 36/ 49



k-SAT Facts

• Every boolean formula has an equivalent CNF formula.

But the size of the CNF formula may be exponential in the
size of the original.

• Not every boolean formula has a k-SAT equivalent.

• 2-SAT is in P, 3-SAT is NP-complete.

Mridul Aanjaneya Automata Theory 37/ 49



Proof: 2-SAT is in P (sketch)

• Pick an assignment for some variable, say x = true.

• Any clause with -x forces the other literal to be true.

Example: (-x + -y) forces y to be false.

• Keep seeing what other truth values are forced by variables
with known truth values.

Mridul Aanjaneya Automata Theory 38/ 49



Proof: 2-SAT is in P (sketch)

• One of three things can happen:
1 You reach a contradiction (e.g., z is forced to be both true and

false).
2 You reach a point where no more variables have their truth

value forced, but some clauses are not yet made true.
3 You reach a satisfying truth assignment.

Mridul Aanjaneya Automata Theory 39/ 49



Proof: 2-SAT is in P (sketch)

• Case 1: (Contradition) There can be only a satisfying
assignment if you use the other truth value for x.

Simplify the formula by replacing x by this truth value and
repeat the process.

• Case 3: You found a satisfying assignment, so answer yes.

Mridul Aanjaneya Automata Theory 40/ 49



Proof: 2-SAT is in P (sketch)

• Case 2: (You force values for some variables, but other
variables and clauses are not affected.)

Adopt these truth values, eliminate the clauses that they
satisfy, and repeat.

• In cases 1 and 2 you have spend O(n2) time and have reduced
the length of the formula by ≥ 1, so O(n3) total.

Mridul Aanjaneya Automata Theory 41/ 49



3-SAT

• This problem is NP-complete.

• Clearly it is in NP, since SAT is.

• It is not true that every boolean formula can be converted to
an equivalent 3-CNF formula, even if we exponentiate the size
of the formula.

Mridul Aanjaneya Automata Theory 42/ 49



3-SAT

• But we don’t need equivalence.

• We need to reduce every CNF formula F to some 3-CNF
formula that is satisfiable if and only if F is.

• Reduction involves introducing new variables into long
clauses, so that we can split them apart.

Mridul Aanjaneya Automata Theory 43/ 49



Reduction of CSAT to 3-SAT

• Let (x1 + x2 +. . .+ xn) be a clause in some CSAT instance,
with n ≥ 4.

Note: the x’s are literals, not variables; any of them could be
negated variables.

• Introduce new variables y1,. . .,yn−3 that appear in no other
clause.

Mridul Aanjaneya Automata Theory 44/ 49



Reduction of CSAT to 3-SAT

• Replace (x1 + x2 +. . .+ xn) by (x1+x2+y1)(x3+y2+ -y1). . .
(xn−2+yn−3+ -yn−4)(xn−1+xn+ -yn−3).

• If there is a satisfying assignment of the x’s for the CSAT
instance, then one of the literals xi must be made true.

• Assign yi = true if j < i-1 and yj = false for larger j.

Mridul Aanjaneya Automata Theory 45/ 49



Reduction of CSAT to 3-SAT

• We are not done.

• We also need to show that if the resulting 3SAT instance is
satisfiable, then the original CSAT instance was satisfiable.

Mridul Aanjaneya Automata Theory 46/ 49



Reduction of CSAT to 3-SAT

• Suppose (x1+x2+y1)(x3+y2+ -y1). . . (xn−2+yn−3+
-yn−4)(xn−1+xn+ -yn−3) is satisfiable, but none of the x’s is
true.

• The first clause forces y1 = true.

• Then the second clause forces y2 = true.

• And so on . . . all the y’s must be true.

• But then the last clause is false.

Mridul Aanjaneya Automata Theory 47/ 49



Reduction of CSAT to 3-SAT

• There is a little more to the reduction, for handling clauses of
1 or 2 literals.

• Replace (x) by (x+y1+y2)(x+y1+ -y2)(x+ -y1+y2)(x+ -y2+
-y2).

• Replace (w+x) by (w+x+y)(w+x+ -y).

Mridul Aanjaneya Automata Theory 48/ 49



CSAT to 3-SAT Running Time

• This reduction is surely polynomial.

• In fact, it is linear in the length of the CSAT instance.

• Thus, we have polytime-reduced CSAT to 3-SAT.

• Since CSAT is NP-complete, so is 3-SAT.

Mridul Aanjaneya Automata Theory 49/ 49


