Decidability

Mridul Aanjaneya

August 09, 2012

Binary Strings for TM's

- We shall restrict ourselves to TM's with input alphabet $\{0,1\}$.
- Assign positive integers to the three classes of elements involved in moves:
(1) States: q_{1} (start state), q_{2} (final state), q_{3}, \ldots
(2) Symbols $X_{1}(0), X_{2}(1), X_{3}$ (blank), X_{4}, \ldots
(3) Directions $D_{1}(L)$ and $D_{2}(R)$.

Binary Strings for TM's

- Suppose $\delta\left(\mathrm{q}_{i}, \mathrm{X}_{j}\right)=\left(\mathrm{q}_{k}, \mathrm{X}_{l}, \mathrm{D}_{m}\right)$.
- Represent this rule bu string $0^{i} 10^{j} 10^{k} 10^{\prime} 10^{m}$.
- Key point: Since integers $\mathrm{i}, \mathrm{j}, \ldots$ are all >0, there cannot be two consecutive 1's in these strings.

Binary Strings for TM's

- Represent a TM by concatenating the codes for each of its moves, separated by 11 as punctuation.
- That is: Code $_{1} 11$ Code $_{2} 11$ Code $_{3} 11 \ldots$

Enumerating TM's and Binary Strings

- We can uniquely encode binary strings as integers.
- Thus, it makes sense to talk about the ith binary string and about the ith Turing machine.
- Note: If i makes no sense as a TM, assume the i th TM accepts nothing.

Table of Acceptance

String j

Diagonalization Again

- whenever we have a table like the one on the previous slide, we can diagonalize it.
- That is, construct a sequence D by complementing each bit along the major diagonal.
- Formally, $\mathrm{D}=\mathrm{a}_{1} \mathrm{a}_{2} \ldots$, where $\mathrm{a}_{i}=0$ if the (i, i) table entry is 1 , and vice-versa.

The Diagonalization Argument

- Could D be a row (representing the language accepted by a TM) of the table?
- Suppose it were the j th row.
- But D disagrees with the j th row at the j th column.
- Thus D is not a row.

Diagonalization

- Consider the diagonalization langauge $L_{d}=\{w \mid w$ is the ith string, and the ith TM does not accept $w\}$.
- We have shown that L_{d} is not a recursively enumerable language, i.e., it has no TM.

