
Enumerations and Turing Machines

Mridul Aanjaneya

Stanford University

August 07, 2012

Mridul Aanjaneya Automata Theory 1/ 35



Finite Sets

• Intuitively, a finite set is a set for which there is a particular
integer that is the count of the nuber of members.

• Example: {a, b, c} is a finite set, its cardinality is 3.

• It is impossible to find a 1-1 mapping between a finite set and
a proper subset of itself.

Mridul Aanjaneya Automata Theory 2/ 35



Infinite Sets

• Formally, an infinite set is a set for which there is a 1-1
correspondence between itself and a proper subset of itself.

• Example: the positive integers Z = {1, 2, 3, . . .} is an
infinite set.

There is a 1-1 correspondence between 1↔2, 2↔4, 3↔6, . . .
between this set and a proper subset (the set of even integers).

Mridul Aanjaneya Automata Theory 3/ 35



Countable Sets

• A countable set is a set with a 1-1 correspondence with the
positive integers Z+.

Hence, all countable sets are infinite.

• Example: All integers.

0↔1, -i↔2i , +i↔2i+1.
Thus, order is 0, -1, 1, -2, 2, -3, 3, . . .

Mridul Aanjaneya Automata Theory 4/ 35



Enumerations

• An enumeration of a set if a 1-1 correspondence between the
set and the positive integers Z+.

Mridul Aanjaneya Automata Theory 5/ 35



How Many Languages?

• Are the languages over {0,1}∗ countable?

• No, here’s a proof.

• Suppose we could enumerate all languages over {0,1}∗ and
talk about the ith language.

• Consider the language L = {w | w is the ith binary string and
w is not in the ith language}.

Mridul Aanjaneya Automata Theory 6/ 35



Proof

• Clearly, L is a language over {0,1}∗.

• Thus, it is the jth language for some particular j .

• Let x be the jth string.

• Is x in L?

If so, x is not in L (by definition).
If not, then x is in L (by definition).

• We have a contradiction: x is neither in L nor not in L, so our
sole assumption (that there was an enumeration of the
languages) is wrong.

Mridul Aanjaneya Automata Theory 7/ 35



Turing-Machine Theory

• The purpose of the theory of Turing Machines is to prove that
certain specific languages have no algorithm.

• Start with a language about Turing Machines themselves.

• Reductions are used to prove more common questions
undecidable.

Mridul Aanjaneya Automata Theory 8/ 35



Picture of a Turing Machine

A B C A D F K

State

Mridul Aanjaneya Automata Theory 9/ 35



Why Turing Machines?

• Why not deal with C programs or something like that?

• Answer: You can, but it is easier to prove things about TM’s,
because they are so simple.

And yet they are as powerful as any computer.
More so, in fact, since they have infinite memory.

Mridul Aanjaneya Automata Theory 10/ 35



Then why not FSM’s to model computers?

• In principle, you could, but it is not instructive.

• Programming models don’t build in a limit on memory.

• In practice, you can do to Fry’s and buy another disk.

• But finite automata vital at the chip level (model-checking).

Mridul Aanjaneya Automata Theory 11/ 35



Turing-Machine Formalism

• A TM is described by:
1 A finite set of states (Q, typically).
2 An input alphabet (Σ, typically).
3 A tape alphabet (Γ, typically).
4 A transition function (δ, typically).
5 A start state (q0, in Q, typically).
6 A blank symbol (B, in Γ− Σ, typically).

All tape except for the input is blank initially.

7 A set of final states (F ⊆ Q, typically).

Mridul Aanjaneya Automata Theory 12/ 35



Conventions

• a, b,. . . are input symbols.

• . . ., X, Y, Z are tape symbols.

• . . ., w, x, y, z are strings of input symbols.

• α, β,. . . are strings of tape symbols.

Mridul Aanjaneya Automata Theory 13/ 35



The Transition Function

• Takes two arguments:
1 A state in Q.
2 A tape symbol in Γ.

• δ(q,Z) is either undefined or a triple of the form (p,Y,D).

p is a state.
Y is the new tape symbol.
D is a direction, L or R.

Mridul Aanjaneya Automata Theory 14/ 35



Actions of the TM

• If δ(q,Z) = (p,Y,D) then, in state q, scanning Z under its
tape head, the TM:

Changes the state to p.
Replaces Z by Y on the tape.
Moves the head one square in direction D.
D = L: move left, D = R: move right.

Mridul Aanjaneya Automata Theory 15/ 35



Example: Turing Machine

• This TM scans its input right, looking for a 1.

• If it finds one, it changes it to a 0, goes to final state f, and
halts.

• If it reaches a blank, it changes it to a 1 and moves left.

Mridul Aanjaneya Automata Theory 16/ 35



Example: Turing Machine

• States = {q, f}.
• Input symbols = {0, 1}.
• Tape symbols = {0, 1, B}.
• δ(q,0) = (q,0,R).

• δ(q,1) = (f,0,R).

• δ(q,B) = (q,1,L).

Mridul Aanjaneya Automata Theory 17/ 35



Example: Turing Machine

• δ(q,0) = (q,0,R).

B B B 0 0 B B

q

Mridul Aanjaneya Automata Theory 18/ 35



Example: Turing Machine

• δ(q,0) = (q,0,R).

B B B 0 0 B B

q

Mridul Aanjaneya Automata Theory 19/ 35



Example: Turing Machine

• δ(q,0) = (q,0,R).

B B B 0 0 B B

q

Mridul Aanjaneya Automata Theory 20/ 35



Example: Turing Machine

• δ(q,B) = (q,1,L).

B B B 0 0 B B

q

Mridul Aanjaneya Automata Theory 21/ 35



Example: Turing Machine

• δ(q,0) = (q,0,R).

B B B 0 0 1 B

q

Mridul Aanjaneya Automata Theory 22/ 35



Example: Turing Machine

• δ(q,1) = (f,0,R).

B B B 0 0 1 B

q

Mridul Aanjaneya Automata Theory 23/ 35



Example: Turing Machine

• δ(q,1) = (f,0,R).

B B B 0 0 0 B

f

Mridul Aanjaneya Automata Theory 24/ 35



Instantaneous Descriptions of a Turing Machine

• Initially, a TM has a tape consisting of a string of input
symbols surrounded by an infinity of blanks in both directions.

• The TM is in the start state, and the head is at the leftmost
input symbol.

Mridul Aanjaneya Automata Theory 25/ 35



Instantaneous Descriptions of a Turing Machine

• An ID is a string αqβ, where αβ is the tape between the
leftmost and rightmost nonblanks (inclusive).

• The state q is immediately to the left of the tape symbol
scanned.

• If q is at the right end, it is scanning B.

If q is scanning a B at the left end, then consecutive B’s at
and to the right of q are part of α.

Mridul Aanjaneya Automata Theory 26/ 35



Instantaneous Descriptions of a Turing Machine

• As for PDA’s we may use symbols ` and `∗ to represent
becomes in one move and becomes in zero or more moves,
respectively, on ID’s.

• Example: The moves of the previous TM are q00 ` 0q0 `
00q ` 0q01 ` 00q1 ` 000f.

Mridul Aanjaneya Automata Theory 27/ 35



Formal Definition of Moves

1 If δ(q,Z) = (p,Y,R), then

αqZβ ` αYpβ
If Z is the blank B, then also αq ` αYp

2 If δ(q,Z) = (p,Y,L), then

For any X, αXqZβ ` αpXYβ
In addition, qZβ ` pBYβ

Mridul Aanjaneya Automata Theory 28/ 35



Languages of a TM

• A TM defines a language by final state as usual.

L(M) = {w | q0w `∗ I, where I is an ID with a final state}.
• Or, a TM can accept a language by halting.

H(M) = {w | q0w `∗ I, and there is no move from ID I}.

Mridul Aanjaneya Automata Theory 29/ 35



Equivalence of Acceptance and Halting

1 If L = L(M), then there is a TM M’ such that L = H(M’).

2 If L = H(M’), then there is a TM M” such that L = L(M”).

Mridul Aanjaneya Automata Theory 30/ 35



Acceptance → Halting

• Modify M to become M’ as follows:
1 For each accepting state of M, remove any moves, so M’ halts

in that state.
2 Avoid having M’ accidentally halt.
3 Introduece a new state s, which runs to the right forever, i.e.,
δ(s,X) = (s,X,R) for all symbols X.

4 If q is not accepting, and δ(q,X) is undefined, let δ(q,X) =
(s,X,R).

Mridul Aanjaneya Automata Theory 31/ 35



Halting → Acceptance

• Modify M to become M” as follows:
1 Introduce a new state f, the only accepting state of M”.
2 f has no moves.
3 If δ(q,X) is undefined for any state q and symbol X, define it

by δ(q,X) = (f,X,R).

Mridul Aanjaneya Automata Theory 32/ 35



Recursively Enumerable Languages

• We now see that the classes of languages defined by TM’s
using final state and halting are the same.

• This class of languages is called the recursively enumerable
languages.

Why? The term actually predates the Turing Machine and
refers to another notion of computation of functions.

Mridul Aanjaneya Automata Theory 33/ 35



Recursive Languages

• An algorithm is a TM that is guaranteed to halt whether or
not it accepts.

• If L = L(M) for some TM M that is an algorithm, we say L is
a recursive language.

Why? Again, don’t ask. It is a term with a history.

Mridul Aanjaneya Automata Theory 34/ 35



Example: Recursive Languages

• Every CFL is a recursive language.

Use the CYK algorithm.

• Every regular language is a CFL (think of its DFA as a PDA
that ignores its stack); therefore every regular language is
recursive.

• Almost anything you can think of is recursive.

Mridul Aanjaneya Automata Theory 35/ 35


