Enumerations and Turing Machines

Mridul Aanjaneya

Stanford University

August 07, 2012

Mridul Aanjaneya Automata Theory 1/ 35

Finite Sets

e Intuitively, a finite set is a set for which there is a particular
integer that is the count of the nuber of members.

e Example: {a, b, c} is a finite set, its cardinality is 3.

e It is impossible to find a 1-1 mapping between a finite set and
a proper subset of itself.

Mridul Aanjaneya Automata Theory 2/ 35

Infinite Sets

e Formally, an infinite set is a set for which there is a 1-1
correspondence between itself and a proper subset of itself.

e Example: the positive integers Z = {1, 2, 3, ...} is an
infinite set.

o There is a 1-1 correspondence between 1432, 24, 3506, ...
between this set and a proper subset (the set of even integers).

Mridul Aanjaneya Automata Theory 3/35

Countable Sets

e A countable set is a set with a 1-1 correspondence with the
positive integers Z™T.
e Hence, all countable sets are infinite.
o Example: All integers.

o 061, -ie2i, +i+>2i+1.
o Thus, orderis 0, -1, 1, -2, 2, -3, 3, ...

Mridul Aanjaneya Automata Theory 4/ 35

Enumerations

e An enumeration of a set if a 1-1 correspondence between the
set and the positive integers ZT.

Mridul Aanjaneya Automata Theory 5/ 35

How Many Languages?

Are the languages over {0,1}* countable?

No, here's a proof.

Suppose we could enumerate all languages over {0,1}* and
talk about the ith language.

Consider the language L = {w | w is the ith binary string and
w is not in the ith language}.

Mridul Aanjaneya Automata Theory 6/ 35

e Clearly, L is a language over {0,1}*.

e Thus, it is the jth language for some particular .
e Let x be the jth string.

o IsxinL?

o If so, x is not in L (by definition).
o If not, then x is in L (by definition).

e We have a contradiction: x is neither in L nor not in L, so our
sole assumption (that there was an enumeration of the
languages) is wrong.

Mridul Aanjaneya Automata Theory 7/ 35

Turing-Machine Theory

e The purpose of the theory of Turing Machines is to prove that
certain specific languages have no algorithm.

e Start with a language about Turing Machines themselves.

e Reductions are used to prove more common questions
undecidable.

Mridul Aanjaneya Automata Theory 8/ 35

Picture of a Turing Machine

State

Mridul Aanjaneya Automata Theory

Why Turing Machines?

e Why not deal with C programs or something like that?

e Answer: You can, but it is easier to prove things about TM's,
because they are so simple.

e And yet they are as powerful as any computer.
e More so, in fact, since they have infinite memory.

Mridul Aanjaneya Automata Theory 10/ 35

Then why not FSM's to model computers?

In principle, you could, but it is not instructive.

Programming models don't build in a limit on memory.

In practice, you can do to Fry’'s and buy another disk.

But finite automata vital at the chip level (model-checking).

Mridul Aanjaneya Automata Theory 11/ 35

Turing-Machine Formalism

e A TM is described by:
O A finite set of states (Q, typically).
@ An input alphabet (X, typically).
© A tape alphabet (I, typically).
@ A transition function (¢, typically).

O A start state (qo, in Q, typically).
@ A blank symbol (B, in I — X, typically).

o All tape except for the input is blank initially.
@ A set of final states (F C Q, typically).

Mridul Aanjaneya Automata Theory 12/ 35

Conventions

e a, b,... are input symbols.
e ..., X, Y, Z are tape symbols.
e ..., W, X, Y, z are strings of input symbols.

e «, [3,... are strings of tape symbols.

Mridul Aanjaneya Automata Theory 13/ 35

The Transition Function

e Takes two arguments:
Q A state in Q.
@ A tape symbol in .
e 0(q,Z) is either undefined or a triple of the form (p,Y,D).

e p is a state.
e Y is the new tape symbol.
o D is a direction, L or R.

Mridul Aanjaneya Automata Theory 14/ 35

Actions of the TM

e If 6(q,Z) = (p,Y,D) then, in state q, scanning Z under its
tape head, the TM:

Changes the state to p.

Replaces Z by Y on the tape.

Moves the head one square in direction D.

D = L: move left, D = R: move right.

Mridul Aanjaneya Automata Theory 15/ 35

Example: Turing Machine

e This TM scans its input right, looking for a 1.

e If it finds one, it changes it to a 0, goes to final state f, and
halts.

e If it reaches a blank, it changes it to a 1 and moves left.

Mridul Aanjaneya Automata Theory 16/ 35

Example: Turing Machine

States = {q, f}.

Input symbols = {0, 1}.
Tape symbols = {0, 1, B}.
6(a.0) = (q,0,R).

d(q,1) = (f,0,R).

6(a.B) = (a.1.L).

Mridul Aanjaneya Automata Theory 17/ 35

Example: Turing Machine

e 5(q,0) = (q,0,R).

Mridul Aanjaneya Automata Theory

Example: Turing Machine

e 5(q,0) = (q,0,R).

Mridul Aanjaneya Automata Theory

Example: Turing Machine

e 5(q,0) = (q,0,R).

-
«

Mridul Aanjaneya Automata Theory

Example: Turing Machine

e 5(q,B) = (q,1,L).

-
«

Mridul Aanjaneya Automata Theory

Example: Turing Machine

e 5(q,0) = (q,0,R).

Mridul Aanjaneya Automata Theory

Example: Turing Machine

o 8(a.1) = (F.O.R).

Mridul Aanjaneya Automata Theory

Example: Turing Machine

o 8(a.1) = (F.O.R).

-
«

Mridul Aanjaneya Automata Theory

Instantaneous Descriptions of a Turing Machine

e Initially, a TM has a tape consisting of a string of input
symbols surrounded by an infinity of blanks in both directions.

e The TM is in the start state, and the head is at the leftmost
input symbol.

Mridul Aanjaneya Automata Theory 25/ 35

Instantaneous Descriptions of a Turing Machine

e An ID is a string aqf3, where o3 is the tape between the
leftmost and rightmost nonblanks (inclusive).

e The state g is immediately to the left of the tape symbol
scanned.
e If g is at the right end, it is scanning B.

e If g is scanning a B at the left end, then consecutive B's at
and to the right of q are part of a.

Mridul Aanjaneya Automata Theory 26/ 35

Instantaneous Descriptions of a Turing Machine

e As for PDA’s we may use symbols - and F* to represent

becomes in one move and becomes in zero or more moves,
respectively, on ID’s.

e Example: The moves of the previous TM are q00 + 0q0 +
00g F 0g01 00ql ~ 00Of.

Mridul Aanjaneya Automata Theory 27/ 35

Formal Definition of Moves

Q If 6(q,Z) = (p,Y,R), then
e aqZp F aYpp
o If Z is the blank B, then also aq F aYp

Q If 6(q,Z) = (p,Y,L), then
e For any X, aXqZp F apXYS
e In addition, qZj F pBYp

Mridul Aanjaneya Automata Theory 28/ 35

Languages of a TM

e A TM defines a language by final state as usual.

o L(M) = {w | gow F* I, where | is an ID with a final state}.
e Or, a TM can accept a language by halting.

o H(M) = {w | gow F* I, and there is no move from ID I}.

Mridul Aanjaneya Automata Theory 29/ 35

Equivalence of Acceptance and Halting

Q If L = L(M), then there is a TM M’ such that L = H(M").
@ If L = H(M’), then there isa TM M" such that L = L(M").

Mridul Aanjaneya Automata Theory 30/ 35

Acceptance — Halting

e Modify M to become M’ as follows:

@ For each accepting state of M, remove any moves, so M’ halts
in that state.

@ Avoid having M’ accidentally halt.

© Introduece a new state s, which runs to the right forever, i.e.,
3(s,X) = (s,X,R) for all symbols X.

@ If q is not accepting, and 6(q,X) is undefined, let 6(q,X) =
(s, X,R).

Mridul Aanjaneya Automata Theory 31/ 35

Halting — Acceptance

e Modify M to become M" as follows:
@ Introduce a new state f, the only accepting state of M".
@ f has no moves.
© If §(q,X) is undefined for any state q and symbol X, define it
by §(q,X) = (f, X,R).

Mridul Aanjaneya Automata Theory 32/ 35

Recursively Enumerable Languages

e We now see that the classes of languages defined by TM's
using final state and halting are the same.

e This class of languages is called the recursively enumerable
languages.

o Why? The term actually predates the Turing Machine and
refers to another notion of computation of functions.

Mridul Aanjaneya Automata Theory 33/ 35

Recursive Languages

e An algorithm is a TM that is guaranteed to halt whether or
not it accepts.

e If L = L(M) for some TM M that is an algorithm, we say L is
a recursive language.

o Why? Again, don't ask. It is a term with a history.

Mridul Aanjaneya Automata Theory 34/ 35

Example: Recursive Languages

e Every CFL is a recursive language.
o Use the CYK algorithm.

o Every regular language is a CFL (think of its DFA as a PDA
that ignores its stack); therefore every regular language is
recursive.

e Almost anything you can think of is recursive.

Mridul Aanjaneya Automata Theory 35/ 35

