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Pumping Lemma for CFL’s: Intuition

• Recall the pumping lemma for regular languages.

• It told us that if there was a string long enough to cause a
cycle in the DFA for the language, then we could pump the
cycle and discover an infinite sequence of strings that had to
be in the language.
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Pumping Lemma for CFL’s: Intuition

• For CFL’s the situation is a little more complicated.

• We can always find two pieces of any sufficiently long string
to pump in tandem.

• That is, if we repeat each of these two pieces the same
number of times, we get another string in the language.

Mridul Aanjaneya Automata Theory 3/ 41



The CFL Pumping Lemma

Theorem

For every CFL L there is an integer n, such that for every string z
in L of length ≥ n, there exists z = uvwxy such that:

• |vwx| ≤ n.

• |vx| > 0.

• For all i ≥ 0, uviwxiy ∈ L.
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Proof of the Pumping Lemma

• Start with a CNF grammar for L - {ε}.
• Let the grammar have m variables.

• Pick n = 2m.

• Let |z | ≥ n.

• We claim (“Lemma 1”) that a parse tree with yield z must
have a path of length m+2 or more.
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Proof of Lemma 1

• If all the paths in the parse tree of a CNF grammar are of
length ≤ m + 1, then the longest yield has length 2m−1, as in:

m
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Proof of the Pumping Lemma

• Now we know that the parse tree for z has a path with at
least m+1 variables.

• Consider some longest path.

• There are only m different variables, so among the lowest
m+1 we can find two nodes with the same label, say A.

• The parse tree thus looks like:
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Proof of the Pumping Lemma

A

u v w x y

A
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Using the Pumping Lemma

• Non-CFL’s typically involve trying to match two pairs of
counts or match two strings.

• Example: Show that L = {0i10i10i | i ≥ 1} is not a CFL.

• Proof using the pumping lemma.

• Suppose L were a CFL.

• Let n be L’s pumping length.

Mridul Aanjaneya Automata Theory 9/ 41



Using the Pumping Lemma

• Consider z = 0n10n10n.

• We can write z = uvwxy, where |vwx | ≤ n, and |vx | ≥ 1.

• Case 1: vx has no 0’s.

Then at least one of them is a 1, and uwy has at most one 1,
which no string in L does.
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Using the Pumping Lemma

• Still considering z = 0n10n10n.

• Case 2: vx has at least one 0.

vwx is too short (length ≤ n) to extend to all three blocks of
0’s in 0n10n10n.
Thus, uwy has at least one block of n 0’s, and at least one
block with fewer than n 0’s.
Thus, uwy is not in L.
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Summary of Decision Properties

• As usual, when we talk about a CFL we really mean a
representation for the CFL, e.g., a CFG or a PDA accepting
by final state or empty stack.

• There are algorithms to decide if:

String w is in CFL L.
CFL L is empty.
CFL L is infinite.
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Non-decision Properties

• Many questions that can be decided for regular sets cannot be
decided for CFL’s.

• Example: Are two CFL’s the same?

• Example: Are two CFL’s disjoint?

How would you do that for regular languages?

• Need theory of Turing Machines and decidability to prove no
algorithm exists.
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Testing Emptiness

• We already did this.

• We learned to eliminate variables that generate no terminal
string.

• If the start symbol is one of these, then the CFL is empty;
otherwise not.
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Testing Membership

• Want to know if string w is in L(G).

• Assume G is in CNF.

Or convert the given grammar to CNF.
w = ε is a special case, solved by testing if the start symbol is
nullable.

• Algorithm CYK is a good example of dynamic programming
and runs in O(n3), where n = |w |.
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CYK Algorithm

• Let w = a1a2 . . .an.

• We construct an n-by-n triangular array of sets of variables.

• Xij = {variables A | A ⇒∗ ai . . .aj}.
• Induction on j-i+1.

The length of the derived string.

• Finally, ask if S is in X1n.
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CYK Algorithm

• Basis: Xii = {A | A → ai is a production}.
• Induction: Xij = {A | there is a production A → BC and an

integer k, with i ≤ k < j , such that B is in Xik and C is in
Xk+1,j}.
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Example: CYK Algorithm

• Grammar: S → AB, A → BC|a, B → AC|b, C → a|b
• String w = ababa.

• X11 = {A,C}, X22 = {B,C}, X33 = {A,C}, X44 = {B,C}, X55

= {A,C}.
• X12 = {B,S}, X23 = {A}, X34 = {B,S}, X45 = {A}.
• X13 = {A}, X24 = {B,S}, X35 = {A}.
• X14 = {B,S}, X25 = {A}.
• X15 = {A}.
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Testing Infiniteness

• The idea is essentially the same as for regular languages.

• Use the pumping length n.

• If there is a string in the language of length between n and
2n-1, then the language is infinite; otherwise not.
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Closure Properties of CFL’s

• CFL’s are closed under union, concatenation, and Kleene
closure.

• Also, under reversal, homomorphisms and inverse
homomorphisms.

• But not under intersection or difference.
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Closure of CFL’s under Union

• Let L and M be CFL’s with grammars G and H, respectively.

• Assume G and H have no variables in common.

Names of variables do not affect the language.

• Let S1 and S2 be the start symbols of G and H.
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Closure of CFL’s under Union

• Form a new grammar for L∪M by combining all the symbols
and productions of G and H.

• Then, add a new start symbol S.

• Add the production S → S1|S2.
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Closure of CFL’s under Union

• In the new grammar, all derivations start with S.

• The first step replaces S by either S1 or S2.

• In the first case, the result must be a string in L(G) = L, and
in the second case a string in L(H) = M.
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Closure of CFL’s under Concatenation

• Let L and M be CFL’s with grammars G and H, respectively.

• Assume G and H have no variables in common.

• Let S1 and S2 be the start symbols of G and H.
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Closure of CFL’s under Concatenation

• Form a new grammar for LM by combining all the symbols
and productions of G and H.

• Add a new start symbol S.

• Add the production S → S1S2.

• Every derivation from S results in a string in L followed by one
in M.
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Closure under Star

• Let L have grammar G, with start symbol S1.

• Form a new grammar for L∗ by introducing to G a new start
symbol S and the productions S → S1S | ε.

• A rightmost derivation from S generates a sequence of zero or
more S1’s, each of which generates some string in L.
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Closure of CFL’s under Reversal

• If L is a CFL with a grammar G, form a grammar for LR by
reversing the right side of every production.

• Example: Let G have S → 0S1 | 01.

• The reversal of L(G) has grammar S → 1S0 | 10.
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Closure of CFL’s under Homomorphisms

• Let L be a CFL with a grammar G.

• Let h be a homomorphism on the terminal symbols of G.

• Construct a grammar for h(L) by replacing each terminal
symbol a by h(a).
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Example: Closure under Homomorphisms

• G has productions S → 0S1 | 01.

• h is defined by h(0) = ab, h(1) = ε.

• h(L(G)) has the grammar with productions S → abS | ab.
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Closure under Inverse Homomorphisms

• Here, grammars do not help us.

• But a PDA construction serves nicely.

• Intuition: Let L = L(P) for some PDA P.

• Construct PDA P’ to accept h−1(L).

• P’ simulates P, but keeps, as one component of a
two-component state a buffer that holds the result of applying
h to one input symbol.
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Architecture of P’

• Read first remaining symbol in buffer as if it were input to P.

Buffer

State of P

Stack of P

Input:  0 0 1 1
h(0)
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Formal Construction of P’

• States are pairs [q,b], where:
1 q is a state of P.
2 b is a suffix of h(a) for some symbol a.

• Thus, only a finite number of possible values for b.

• Stack symbols of P’ are those of P.

• Start state of P’ is [q0,ε].
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Formal Construction of P’

• Input symbols of P’ are the symbols to which h applies.

• Final states of P’ are the states [q,ε] such that q is a final
state of P.
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Transitions of P’

1 δ′([q,ε],a,X) = {([q,h(a)],X)} for any input symbol a of P’
and any stack symbol X.

When the buffer is empty, P’ can reload it.

2 δ′([q,bw],ε,X) contains ([p,w],α) if δ(q,b,X) contains (p,α),
where b is either an input symbol of P or ε.

Simulate P from the buffer.
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Proving Correctness of P’

• We need to show that L(P’) = h−1(L(P)).

• Key argument: P’ makes the transition ([q,ε],w,Z0) `∗
([q,x],ε,α) if and only if P makes transition (q0,y,Z0) `∗
(q,ε,α), h(w) = yx, and x is a suffix of the last symbol of w.

• Proof in both directions is an induction on the number of
moves made.

Left as exercises.
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Nonclosure under Intersection

• Unlike the regular languages, the class of CFL’s is not closed
under intersection.

• We know that L1 = {0n1n2n | n ≥ 1} is not a CFL (using the
pumping lemma).

• However, L2 = {0n1n2i | n≥1,i≥1} is.

CFG: S→AB, A→0A1|01, B→2B|2.

• So is L3 = {0i1n2n | n≥1,i≥1}.
• But L1 = L2∩L3.
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Nonclosure under Difference

• We can prove something more general:

Any class of languages that is closed under difference is closed
under intersection.

• Proof: L∩M = L - (L - M).

• Thus, if CFL’s were closed under difference, they would be
closed under intersection, but they are not.
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Intersection with a Regular Language

• Intersection of two CFL’s need not be context-free.

• But the intersection of a CFL with a regular language is
always a CFL.

• Proof involves running a DFA in parallel with a PDA, and
noting that the combination is a PDA.

PDA’s accept by final state.

Mridul Aanjaneya Automata Theory 38/ 41



PDA and DFA in parallel

DFA

PDA

Input
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Formal Construction

• Let the DFA A have transition function δA.

• Let the PDA P have transition function δP .

• States of combined PDA are [q,p], where q is a state of A and
p is a state of P.

• δ([q,p],a,X) contains ([δA(q,a),r],α) if δP(p,a,X) contains
(r,α).

Note: a could be ε, in which case δA(q,a) = q.
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Formal Construction

• Accepting states of combined PDA are those [q,p] such that q
is an accepting state of A and p is an accepting state of P.

• Easy induction: ([q0,p0],w,Z0) `∗ ([q,p],ε,α) if and only if
δA(q0,w) = q and in P: (p0,w,Z0) `∗ (p,ε,α).
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