
Pumping Lemma and Closure Properties of CFL’s

Mridul Aanjaneya

Stanford University

August 2, 2012

Mridul Aanjaneya Automata Theory 1/ 41

Pumping Lemma for CFL’s: Intuition

• Recall the pumping lemma for regular languages.

• It told us that if there was a string long enough to cause a
cycle in the DFA for the language, then we could pump the
cycle and discover an infinite sequence of strings that had to
be in the language.

Mridul Aanjaneya Automata Theory 2/ 41

Pumping Lemma for CFL’s: Intuition

• For CFL’s the situation is a little more complicated.

• We can always find two pieces of any sufficiently long string
to pump in tandem.

• That is, if we repeat each of these two pieces the same
number of times, we get another string in the language.

Mridul Aanjaneya Automata Theory 3/ 41

The CFL Pumping Lemma

Theorem

For every CFL L there is an integer n, such that for every string z
in L of length ≥ n, there exists z = uvwxy such that:

• |vwx| ≤ n.

• |vx| > 0.

• For all i ≥ 0, uviwxiy ∈ L.

Mridul Aanjaneya Automata Theory 4/ 41

Proof of the Pumping Lemma

• Start with a CNF grammar for L - {ε}.
• Let the grammar have m variables.

• Pick n = 2m.

• Let |z | ≥ n.

• We claim (“Lemma 1”) that a parse tree with yield z must
have a path of length m+2 or more.

Mridul Aanjaneya Automata Theory 5/ 41

Proof of Lemma 1

• If all the paths in the parse tree of a CNF grammar are of
length ≤ m + 1, then the longest yield has length 2m−1, as in:

m

Mridul Aanjaneya Automata Theory 6/ 41

Proof of the Pumping Lemma

• Now we know that the parse tree for z has a path with at
least m+1 variables.

• Consider some longest path.

• There are only m different variables, so among the lowest
m+1 we can find two nodes with the same label, say A.

• The parse tree thus looks like:

Mridul Aanjaneya Automata Theory 7/ 41

Proof of the Pumping Lemma

A

u v w x y

A

Mridul Aanjaneya Automata Theory 8/ 41

Using the Pumping Lemma

• Non-CFL’s typically involve trying to match two pairs of
counts or match two strings.

• Example: Show that L = {0i10i10i | i ≥ 1} is not a CFL.

• Proof using the pumping lemma.

• Suppose L were a CFL.

• Let n be L’s pumping length.

Mridul Aanjaneya Automata Theory 9/ 41

Using the Pumping Lemma

• Consider z = 0n10n10n.

• We can write z = uvwxy, where |vwx | ≤ n, and |vx | ≥ 1.

• Case 1: vx has no 0’s.

Then at least one of them is a 1, and uwy has at most one 1,
which no string in L does.

Mridul Aanjaneya Automata Theory 10/ 41

Using the Pumping Lemma

• Still considering z = 0n10n10n.

• Case 2: vx has at least one 0.

vwx is too short (length ≤ n) to extend to all three blocks of
0’s in 0n10n10n.
Thus, uwy has at least one block of n 0’s, and at least one
block with fewer than n 0’s.
Thus, uwy is not in L.

Mridul Aanjaneya Automata Theory 11/ 41

Summary of Decision Properties

• As usual, when we talk about a CFL we really mean a
representation for the CFL, e.g., a CFG or a PDA accepting
by final state or empty stack.

• There are algorithms to decide if:

String w is in CFL L.
CFL L is empty.
CFL L is infinite.

Mridul Aanjaneya Automata Theory 12/ 41

Non-decision Properties

• Many questions that can be decided for regular sets cannot be
decided for CFL’s.

• Example: Are two CFL’s the same?

• Example: Are two CFL’s disjoint?

How would you do that for regular languages?

• Need theory of Turing Machines and decidability to prove no
algorithm exists.

Mridul Aanjaneya Automata Theory 13/ 41

Testing Emptiness

• We already did this.

• We learned to eliminate variables that generate no terminal
string.

• If the start symbol is one of these, then the CFL is empty;
otherwise not.

Mridul Aanjaneya Automata Theory 14/ 41

Testing Membership

• Want to know if string w is in L(G).

• Assume G is in CNF.

Or convert the given grammar to CNF.
w = ε is a special case, solved by testing if the start symbol is
nullable.

• Algorithm CYK is a good example of dynamic programming
and runs in O(n3), where n = |w |.

Mridul Aanjaneya Automata Theory 15/ 41

CYK Algorithm

• Let w = a1a2 . . .an.

• We construct an n-by-n triangular array of sets of variables.

• Xij = {variables A | A ⇒∗ ai . . .aj}.
• Induction on j-i+1.

The length of the derived string.

• Finally, ask if S is in X1n.

Mridul Aanjaneya Automata Theory 16/ 41

CYK Algorithm

• Basis: Xii = {A | A → ai is a production}.
• Induction: Xij = {A | there is a production A → BC and an

integer k, with i ≤ k < j , such that B is in Xik and C is in
Xk+1,j}.

Mridul Aanjaneya Automata Theory 17/ 41

Example: CYK Algorithm

• Grammar: S → AB, A → BC|a, B → AC|b, C → a|b
• String w = ababa.

• X11 = {A,C}, X22 = {B,C}, X33 = {A,C}, X44 = {B,C}, X55

= {A,C}.
• X12 = {B,S}, X23 = {A}, X34 = {B,S}, X45 = {A}.
• X13 = {A}, X24 = {B,S}, X35 = {A}.
• X14 = {B,S}, X25 = {A}.
• X15 = {A}.

Mridul Aanjaneya Automata Theory 18/ 41

Testing Infiniteness

• The idea is essentially the same as for regular languages.

• Use the pumping length n.

• If there is a string in the language of length between n and
2n-1, then the language is infinite; otherwise not.

Mridul Aanjaneya Automata Theory 19/ 41

Closure Properties of CFL’s

• CFL’s are closed under union, concatenation, and Kleene
closure.

• Also, under reversal, homomorphisms and inverse
homomorphisms.

• But not under intersection or difference.

Mridul Aanjaneya Automata Theory 20/ 41

Closure of CFL’s under Union

• Let L and M be CFL’s with grammars G and H, respectively.

• Assume G and H have no variables in common.

Names of variables do not affect the language.

• Let S1 and S2 be the start symbols of G and H.

Mridul Aanjaneya Automata Theory 21/ 41

Closure of CFL’s under Union

• Form a new grammar for L∪M by combining all the symbols
and productions of G and H.

• Then, add a new start symbol S.

• Add the production S → S1|S2.

Mridul Aanjaneya Automata Theory 22/ 41

Closure of CFL’s under Union

• In the new grammar, all derivations start with S.

• The first step replaces S by either S1 or S2.

• In the first case, the result must be a string in L(G) = L, and
in the second case a string in L(H) = M.

Mridul Aanjaneya Automata Theory 23/ 41

Closure of CFL’s under Concatenation

• Let L and M be CFL’s with grammars G and H, respectively.

• Assume G and H have no variables in common.

• Let S1 and S2 be the start symbols of G and H.

Mridul Aanjaneya Automata Theory 24/ 41

Closure of CFL’s under Concatenation

• Form a new grammar for LM by combining all the symbols
and productions of G and H.

• Add a new start symbol S.

• Add the production S → S1S2.

• Every derivation from S results in a string in L followed by one
in M.

Mridul Aanjaneya Automata Theory 25/ 41

Closure under Star

• Let L have grammar G, with start symbol S1.

• Form a new grammar for L∗ by introducing to G a new start
symbol S and the productions S → S1S | ε.

• A rightmost derivation from S generates a sequence of zero or
more S1’s, each of which generates some string in L.

Mridul Aanjaneya Automata Theory 26/ 41

Closure of CFL’s under Reversal

• If L is a CFL with a grammar G, form a grammar for LR by
reversing the right side of every production.

• Example: Let G have S → 0S1 | 01.

• The reversal of L(G) has grammar S → 1S0 | 10.

Mridul Aanjaneya Automata Theory 27/ 41

Closure of CFL’s under Homomorphisms

• Let L be a CFL with a grammar G.

• Let h be a homomorphism on the terminal symbols of G.

• Construct a grammar for h(L) by replacing each terminal
symbol a by h(a).

Mridul Aanjaneya Automata Theory 28/ 41

Example: Closure under Homomorphisms

• G has productions S → 0S1 | 01.

• h is defined by h(0) = ab, h(1) = ε.

• h(L(G)) has the grammar with productions S → abS | ab.

Mridul Aanjaneya Automata Theory 29/ 41

Closure under Inverse Homomorphisms

• Here, grammars do not help us.

• But a PDA construction serves nicely.

• Intuition: Let L = L(P) for some PDA P.

• Construct PDA P’ to accept h−1(L).

• P’ simulates P, but keeps, as one component of a
two-component state a buffer that holds the result of applying
h to one input symbol.

Mridul Aanjaneya Automata Theory 30/ 41

Architecture of P’

• Read first remaining symbol in buffer as if it were input to P.

Buffer

State of P

Stack of P

Input: 0 0 1 1
h(0)

Mridul Aanjaneya Automata Theory 31/ 41

Formal Construction of P’

• States are pairs [q,b], where:
1 q is a state of P.
2 b is a suffix of h(a) for some symbol a.

• Thus, only a finite number of possible values for b.

• Stack symbols of P’ are those of P.

• Start state of P’ is [q0,ε].

Mridul Aanjaneya Automata Theory 32/ 41

Formal Construction of P’

• Input symbols of P’ are the symbols to which h applies.

• Final states of P’ are the states [q,ε] such that q is a final
state of P.

Mridul Aanjaneya Automata Theory 33/ 41

Transitions of P’

1 δ′([q,ε],a,X) = {([q,h(a)],X)} for any input symbol a of P’
and any stack symbol X.

When the buffer is empty, P’ can reload it.

2 δ′([q,bw],ε,X) contains ([p,w],α) if δ(q,b,X) contains (p,α),
where b is either an input symbol of P or ε.

Simulate P from the buffer.

Mridul Aanjaneya Automata Theory 34/ 41

Proving Correctness of P’

• We need to show that L(P’) = h−1(L(P)).

• Key argument: P’ makes the transition ([q,ε],w,Z0) `∗
([q,x],ε,α) if and only if P makes transition (q0,y,Z0) `∗
(q,ε,α), h(w) = yx, and x is a suffix of the last symbol of w.

• Proof in both directions is an induction on the number of
moves made.

Left as exercises.

Mridul Aanjaneya Automata Theory 35/ 41

Nonclosure under Intersection

• Unlike the regular languages, the class of CFL’s is not closed
under intersection.

• We know that L1 = {0n1n2n | n ≥ 1} is not a CFL (using the
pumping lemma).

• However, L2 = {0n1n2i | n≥1,i≥1} is.

CFG: S→AB, A→0A1|01, B→2B|2.

• So is L3 = {0i1n2n | n≥1,i≥1}.
• But L1 = L2∩L3.

Mridul Aanjaneya Automata Theory 36/ 41

Nonclosure under Difference

• We can prove something more general:

Any class of languages that is closed under difference is closed
under intersection.

• Proof: L∩M = L - (L - M).

• Thus, if CFL’s were closed under difference, they would be
closed under intersection, but they are not.

Mridul Aanjaneya Automata Theory 37/ 41

Intersection with a Regular Language

• Intersection of two CFL’s need not be context-free.

• But the intersection of a CFL with a regular language is
always a CFL.

• Proof involves running a DFA in parallel with a PDA, and
noting that the combination is a PDA.

PDA’s accept by final state.

Mridul Aanjaneya Automata Theory 38/ 41

PDA and DFA in parallel

DFA

PDA

Input

Mridul Aanjaneya Automata Theory 39/ 41

Formal Construction

• Let the DFA A have transition function δA.

• Let the PDA P have transition function δP .

• States of combined PDA are [q,p], where q is a state of A and
p is a state of P.

• δ([q,p],a,X) contains ([δA(q,a),r],α) if δP(p,a,X) contains
(r,α).

Note: a could be ε, in which case δA(q,a) = q.

Mridul Aanjaneya Automata Theory 40/ 41

Formal Construction

• Accepting states of combined PDA are those [q,p] such that q
is an accepting state of A and p is an accepting state of P.

• Easy induction: ([q0,p0],w,Z0) `∗ ([q,p],ε,α) if and only if
δA(q0,w) = q and in P: (p0,w,Z0) `∗ (p,ε,α).

Mridul Aanjaneya Automata Theory 41/ 41

