CS154: Homework \#3

Due: Wednesday, July 25, 2012 by 5PM

Problem 1. Let \mathbf{L} be a regular language over some alphabet Σ. Prove that the language \mathbf{T}, defined as,

$$
\mathbf{T}=\left\{w \in \Sigma^{*} \mid \text { for some string } x, w x \in \mathbf{L}\right\}
$$

is also regular.
Note: Simply describing the DFA is not sufficient. You need to give a formal proof which has two sides, similar to that given in Lecture 1.

Problem 2. Let $\mathbf{L} \subset\{0,1\}^{*}$ be the language of all strings such that there are two 0 's separated by a number of positions that is a non-zero multiple of 5 . Prove that any DFA for this language must have at least 2^{5} states.

Problem 3. Consider two regular languages \mathbf{L}_{1} and \mathbf{L}_{2} defined over the same alphabet Σ. Let the shuffle of \mathbf{L}_{1} and \mathbf{L}_{2} be the language consisting of strings

$$
\left\{w \mid w=a_{1} b_{1} a_{2} b_{2} \ldots a_{k} b_{k}, \text { where } a_{1} \ldots a_{k} \in \mathbf{L}_{1} \text { and } b_{1} \ldots b_{k} \in \mathbf{L}_{2} \text { and each } a_{i}, b_{i} \in \Sigma\right\}
$$

In other words, the shuffle consists of strings of equal length from \mathbf{L}_{1} and \mathbf{L}_{2} whose alphabets are strictly alternated. Prove that the shuffle of \mathbf{L}_{1} and \mathbf{L}_{2} is a regular language as well.

Hint: Let $\Sigma^{\prime}=\Sigma \times \Sigma$ and consider the homomorphism $h: \Sigma^{\prime} \rightarrow \Sigma$ defined as $h(a, b)=a$.
Problem 4. Consider the transition table of a DFA,

a) Draw the table of distinguishabilities for this automaton.
b) Construct the minimum-state equivalent DFA.

Problem 5. Consider the CFG G defined by the productions

$$
S \rightarrow a S b S|b S a S| \varepsilon
$$

Prove that $\mathbf{L}(\mathbf{G})$ is the set of all strings with an equal numbers of a 's and b 's.

