CS154: Homework #3

Due: Wednesday, July 25, 2012 by 5PM

Problem 1. Let L be a regular language over some alphabet Σ . Prove that the language T, defined as,

 $\mathbf{T} = \{ w \in \Sigma^* \mid \text{for some string } x, \, wx \in \mathbf{L} \}$

is also regular.

Note: Simply describing the DFA is *not* sufficient. You need to give a *formal* proof which has two sides, similar to that given in Lecture 1.

Problem 2. Let $\mathbf{L} \subset \{0,1\}^*$ be the language of all strings such that there are two 0's separated by a number of positions that is a **non-zero** multiple of 5. Prove that any DFA for this language must have **at** least 2^5 states.

Problem 3. Consider two regular languages \mathbf{L}_1 and \mathbf{L}_2 defined over the *same* alphabet Σ . Let the *shuffle* of \mathbf{L}_1 and \mathbf{L}_2 be the language consisting of strings

 $\{w \mid w = a_1 b_1 a_2 b_2 \dots a_k b_k, \text{ where } a_1 \dots a_k \in \mathbf{L}_1 \text{ and } b_1 \dots b_k \in \mathbf{L}_2 \text{ and each } a_i, b_i \in \Sigma\}$

In other words, the shuffle consists of strings of equal length from \mathbf{L}_1 and \mathbf{L}_2 whose alphabets are **strictly alternated**. Prove that the shuffle of \mathbf{L}_1 and \mathbf{L}_2 is a regular language as well.

Hint: Let $\Sigma' = \Sigma \times \Sigma$ and consider the homomorphism $h : \Sigma' \to \Sigma$ defined as h(a, b) = a.

Problem 4. Consider the transition table of a DFA,

		0	1
÷	A	B	A
	B	A	C
	C	D	B
	D^*	D	A
	E	D	F
	F	G	E
	G	F	G
	H	G	D

- a) Draw the table of distinguishabilities for this automaton.
- b) Construct the minimum-state equivalent DFA.

Problem 5. Consider the CFG G defined by the productions

$$S \to aSbS \mid bSaS \mid \varepsilon$$

Prove that L(G) is the set of all strings with an equal numbers of a's and b's.