
Accuracy of Interpolation and Splines

Mridul Aanjaneya

November 28, 2017

We saw three methods for polynomial interpolation (Vandermonde, Lagrange,
Newton). It is important to understand that all three methods compute (in
theory) the same exact interpolant Pn(x), just following different paths which
may be better or worse from a computational perspective. The question however
remains:

• How accurate is this interpolation, or in other words,

• How close is Pn(x) to the “real” function f(x)?

Example:

(x0, y0) = (0, 0)

(x1, y1) = (1, 1)
...

(xn, yn) = (n, n)

1

Using Lagrange polynomials Pn(x) (= x) is written as

f(x) =

n∑
i=0

yili(x)

Let us “shift” yn by a small amount δ. The new value is y?n = yn + δ. The
updated interpolant P?

n(x) then becomes:

P?
n(x) =

n−1∑
i=0

yili(x) + y?nln(x)

Thus, P?
n(x) − Pn(x) = δ · ln(x). Note that ln is a function that “oscillates”

through zero several times:

ln(x)

x0 x1 x2 xn−1 xn

2

Thus, P?
n(x) looks like

P?
n(x) y?n

yn

δ

What we observe is that a local change in y-values caused a global (and
drastic) change in Pn(x). Perhaps the “real” function f would have exhibited
a more graceful and localized change, e.g.:

f?(x)

3

We will use the following theorem to compare the “real” function f being
sampled, and the reconstructed interpolant Pn(x).

Theorem 1. Let

• x0 < x1 < . . . < xn−1 < xn

• yn = f(xn), k = 0, 1, . . . , n, where f is a function which is n-times differ-
entiable with continuous derivatives

• Pn(x) is a polynomial that interpolates (x0, y0), (x1, y1) . . . , (xn, yn)

then for any x ∈ (x0, xn), there exists a θ = θ(x) ∈ (x0, xn) such that

f(x)− Pn(x) =
f (n+1)(θ)

(n+ 1)!
(x− x0)(x− x1) . . . (x− xn)

This theorem may be difficult to apply directly since:

• θ is not known

• θ changes with x

• The (n+ 1)-th derivative f (n+1)(x) may not be fully known.

However, we can use it to derive a conservative bound:

Theorem 2. If M = maxx∈[x0,xn] |f (n+1)(x)| and h = max0≤i≤n |xi+1 − xi|,
then

|f(x)− Pn(x)| ≤ Mhn+1

4(n+ 1)

for all x ∈ [x0, xn].

How good is this, especially when we keep adding more and more data
points (e.g., n→∞ and h→ 0), really depends on the higher order derivatives
of f(x). For example, f(x) = sin(x), x ∈ [0, 2π], alll derivatives of f are ± sin(x)
or ± cos(x). Thus, |f (k)(x)| ≤ 1 for any k. In this case, M = 1, and as we add
more (and denser) data points, we have

|f(x)− Pn(x)| ≤ Mhn+1

4(n+ 1)

n→∞−−−−→
h→0

0

For some functions, however, the values of |f (k)(x)| grow vastly as k →∞ (i.e.,
when we introduce additional points). For example,

f(x) =
1

x
, x ∈ (0.5, 1)⇒ |f (n)(x)| = n!

1

xn+1
,M = max

x∈(0.5,1)
|f (n)(x)| = n!2n+1

In this case, as n→∞:

Mhn

4n
=
n!2n+1hn

4n

n→∞−−−−→∞

Another commonly cited example is Runge’s function:

4

f(x) f(x) = 1
1+25x2

−1 0 1

Approximation with a degree-5 polynomial:

P5(x)

−1 0 1

5

Approximation with a degree-10 polynomial:

P10(x)

−1 0 1

Thus, in this case, the polynomial Pk(x) do not uniformly converge to f(x)
as we add more points.

A possible improvement stems from the following idea:

f(x)− Pn(x) =
f (n+1)(θ)

(n+ 1)!︸ ︷︷ ︸
this can be arbitrary

(x− x0) . . . (x− xn)︸ ︷︷ ︸
select points to minimize this product

The value of the product (x− x0) . . . (x− xn) is minimized by selecting the xi’s
as the Chebyshev points. If the interpolation interval is [a, b], the Chebyshev
points are given by:

xi =
a+ b

2
+
a− b

2
cos

(
iπ

n

)
, i = 0, 1, 2, . . . , n

Graphically, these points are the projections on the x-axis of the n + 1 points
located along the half circle with diameter the interval [a, b] at equal arc-lengths:

6

a
x0 x1 x2 x3 x4 x5 x6

b

Now, we can re-try Runge’s function using Chebyshev points:

−1 0 1

In fact, it is possible to show that using Chebyshev points, we can guarantee
that

|f(x)− Pn(x)| n→∞−−−−→ 0

provided that over [a, b] both f(x) and its derivative f ′(x) remain bounded
(the benefit is that this condition does not place restrictions on higher-order
derivatives of f(x)).

7

Although using Chebyshev points mitigates some of the drawbacks of high-
order polynomial interpolants, this is still a non-ideal solution, since:

• We do not always have the flexibility to pick the xi’s.

• Polynomial interpolants of high degree typically require more than O(n)
computational cost to construct.

• Local changes in the data points affect the entire extent of the interpolant.

Piecewise Polynomials

A better remedy is to use piecewise polynomials. Assume that the x-values
{xi}ni=1 are sorted in ascending order:

a = x1 < x2 < . . . < xn = b

Define Ik = [xk, xk+1] and hk = |xk+1 − xk|. We also define the polynomials
s1(x), s2(x), . . . , sn−1(x) and use each of them to define the interpolant s(x) at
the respective interval Ik:

s(x) =


s1(x), x ∈ I1
s2(x), x ∈ I2

...
sn−1(x), x ∈ In−1

The benefit of using piecewise polynomial interpolants is that each sk(x) can
be relatively low order and thus, non-oscillatory and easier to compute. The
simplest piecewise polynomial interpolant is a piecewise linear curve:

8

x1 x2 x3 x4

s1(x)

s2(x)
s3(x)

the “real” f(x)

In this case, every sk can be written out explicitly as:

sk(x) = yk +
yk+1 − yk
xk+1 − xk

(x− xk)

The next step is to examine the error e(x) = f(x) − sk(x) in the interval Ik.
From the theorem we presented in the last lecture, we have that, for any x ∈ Ik
there is a θk = θ(xk) ∈ Ik such that:

e(x) = f(x)− sk(x) =
f ′′(θ)

2
(x− xk)(x− xk+1)︸ ︷︷ ︸

q(x)

(1)

We are interested in the maximum value of |q(x)| in order to determine a bound
for the error. q(x) is a quadratic function which crosses zero at xk and xk+1,
thus the extreme value is obtained at the midpoint xm = (xk + xk+1)/2. Thus,

|q(x)| ≤ |q(xm)| =
(
xk+1 − xk

2

)2

=
h2k
4

for all x ∈ Ik. Using equation (1) gives:

|f(x)− sk(x)| ≤ max
x∈Ik

∣∣∣∣f ′′(x)

2

∣∣∣∣ ·max
x∈Ik
|(x− xk)(x− xk+1)|

= max
x∈Ik

∣∣∣∣f ′′(x)

2

∣∣∣∣ · h2k4
⇒ |f(x)− sk(x)| ≤ 1

8
max
x∈Ik
|f ′′(x)| · h2k

for all x ∈ Ik.

9

Additionally, if we assume all data points are equally spaced, i.e.,

h1 = h2 = . . . = hn−1 = h =

(
b− a
n− 1

)
we can additionally write:

|f(x)− s(x)| ≤ 1

8
max
x∈[a,b]

|f ′′(x)| · h2

We often express the quantity on the right hand side using the “infinity norm”
of a given function, defined as

||f ||∞ = max
x∈[a,b]

|f(x)|

Thus, using this notation:

|f(x)− s(x)| ≤ 1

8
||f ′′||∞ · h2

Note that

• As h → 0, the maximum discrepancy between f and s vanishes (propor-
tionally to h2)

• As we introduce more points, the quality of the approximation increases
consistently, since the criterion above only considers the second derivative
f ′′(x) and not any higher order.

Piecewise cubic interpolation

In this approach, each sk(x) is a cubic polynomial, designed such that it inter-
polates the four data points:

(xk−1, yk−1), (xk, yk), (xk+1, yk+1), (xk+2, yk+2)

As we will see, the benefit is that the error can be made even smaller than
with piecewise linear curves; the drawback is that s(x) can develop “kinks” (or
corners) where two pieces sk and sk+1 are joined.

Error of piecewise cubics:

f(x)− sk(x) =
f ′′′′(θk)

4!
(x− xk−1)(x− xk)(x− xk+1)(x− xk+2)︸ ︷︷ ︸

q(x)

An analysis similar to the linear case can show that

|q(x)| ≤ 9

16
max{hk−1, hk, hk+1}4

10

If we again assume that h1 = h2 = . . . = hn−1 = h, the error bound becomes:

|f(x)− s(x)| ≤ 1

24
||f ′′′′||∞

9

16
h4

⇒ |f(x)− s(x)| ≤ 9

384
||f ′′′′||∞h4

The next possibility we shall consider, is a piecewise cubic curve

s(x) =


s1(x), x ∈ I1
s2(x), x ∈ I2

...
sn−1(x), x ∈ In−1

where each sk(x) = a
(k)
3 x3 + a

(k)
2 x2 + a

(k)
1 x + a

(k)
0 and the coefficients a

(j)
i

are chosen as to force that the curve has continuous values, first and second
derivatives:

sk(xk+1) = sk+1(xk+1)

s′k(xk+1) = s′k+1(xk+1)

s′′k(xk+1) = s′′k+1(xk+1)

The curve constructed this way is called a cubic spline interpolant.

The Cubic Spline

As always, our goal in this interpolation task is to define a curve s(x) which
interpolates the n data points

(x1, y1), (x2, y2), . . . , (xn, yn) (where x1 < x2 < . . . < xn)

In the fashion of piecewise polynomials, we will define s(x) as a different cubic
polynomial sk(x) at each sub-interval Ik = [xk, xk+1], i.e.,

s(x) =


s1(x), x ∈ I1
s2(x), x ∈ I2

...
sn−1(x), x ∈ In−1

Each of the sk’s is a cubic polynomial:

sk(x) = a
(k)
3 x3 + a

(k)
2 x2 + a

(k)
1 x+ a

(k)
0

where a
(k)
3 , a

(k)
2 , a

(k)
1 , a

(k)
0 are unknown coefficients. Since we have n−1 piecewise

polynomials, in total we shall have to determine 4(n − 1) = 4n − 4 unknown
coefficients. The points (x2, x3, . . . , xn−1) where the formula for s(x) changes
from one cubic polynomial (sk) to another (sk+1) are called knots.

11

Note: In some textbooks, the extreme points x1 and xn are also included in the
definition of what a knot is. We will stick with the definition we stated above.

The piecewise polynomial interpolation method described as cubic spline also
requires the neighboring polynomials sk and sk+1 to be joined at xk+1 with a
certain degree of smoothness. In detail:

• The curve should be continuous: sk(xk+1) = sk+1(xk+1)

• The derivative (slope) should be continuous: s′k(xk+1) = s′k+1(xk+1)

• The 2nd derivative should be continuous as well: s′′k(xk+1) = s′′k+1(xk+1)

(Note: If we force the next (3rd) derivative to match, this will force sk and sk+1

to be exactly identical.)

When determining the unknown coefficients {a(j)i }, each of these 3 smoothness
constraints (for knots k = 2, 3, . . . , n − 1) needs to be satisfied, for a total of
3(n−2) = 3n−6 constraint equations. We should not forget that we additionally
want to interpolate all n data points, i.e.,

s(xi) = yi for i = 1, 2, . . . , n

In total, we have 3n − 6 + n = 4n − 6 total equations to satisfy, and 4n − 4
unknowns! Consequently, we will need 2 more equations to ensure that the
unknown coefficients will be uniquely determined. Several plausible options
exist on how to do that:

1. The “not-a-knot” approach: We stipulate that at the locations of the first
knot (x2) and last knot (xn−1) the third derivative of s(x) should also be
continuous, e.g.:

s′′′1 (x2) = s′′′2 (x2) and s′′′n−2(xn−1) = s′′′n−1(xn−1)

As we discussed before, these two additional constraints will effectively
cause s1(x) to be identical with s2(x), and sn−2(x) to coincide with
sn−1(x). In this sense, x2 and xn−1 are no longer “knots” in the sense
that the formula for s(x) “changes” at these points (hence the name).

2. Complete spline: If we have access to the derivative f ′ of the function
being sampled by the yi’s (i.e., yi = f(xi)), we can formulate the two
additional constraints as:

s′1(x1) = f ′(x1) and s′n−1(xn) = f ′(xn)

Note that qualitatively, using the complete spline approach is a better
utilization of the flexibility of the spline curve in matching yet one more
property of f . In contrast, the not-a-knot approach makes the spline “less
flexible” by removing two degrees of freedom, in order to obtain a unique
solution. However, we cannot always assume knowledge of f ′.

12

3. The natural cubic spline: We use the following two constraints:

s′′(x1) = 0 and s′′(xn) = 0

Thus, s(x) reaches the endpoints looking like a straight line (instead of a
curved one).

4. Periodic spline: The following two constraints are used:

s′(x1) = s′(xn) and s′′(x1) = s′′(xn)

This is useful when the underlying function f is also known to be periodical
over [a, b].

Since s(x) is piecewise cubic, its second derivative s′′(x) is piecewise linear on
[x1, xn]. The linear Lagrange interpolation formula gives the following repre-
sentation for s′′(x) = s′′k(x) on [xk, xk+1]:

s′′k(x) = s′′(xk)
x− xk+1

xk − xk+1
+ s′′(xk+1)

x− xk
xk+1 − xk

Defining mk = s′′(xk) and hk = xk+1 − xk gives

s′′k(x) =
mk

hk
(xk+1 − x) +

mk+1

hk
(x− xk)

for xk ≤ x ≤ xk+1 and k = 1, 2, . . . , n− 1. Integrating the above equation twice
will introduce two constants of integration, and the result can be manipulated
so that it has the form:

sk(x) =
mk

6hk
(xk+1 − x)3 +

mk+1

6hk
(x− xk)3 + pk(xk+1 − x) + qk(x− xk) (2)

Substituting xk and xk+1 into equation (2) and using the values yk = sk(xk)
and yk+1 = sk(xk+1) yields the following equations that involve pk and qk
respectively:

yk =
mk

6
h2k + pkhk and yk+1 =

mk+1

6
h2k + qkhk

These two equations are easily solved for pk and qk, and when these values are
substituted into equation (2), the result is the following expression for the cubic
function sk(x):

sk(x) =
mk

6hk
(xk+1 − x)3 +

mk+1

6hk
(x− xk)3 +

(
yk
hk
− mkhk

6

)
(xk+1 − x)

+

(
yk+1

hk
− mk+1hk

6

)
(x− xk) (3)

Notice that equation (3) has been reduced to a form that involves only the
unknown coefficients {mk}. To find these values, we must use the derivative of

13

equation (3), which is

s′k(x) = −mk

2hk
(xk+1 − x)2 +

mk+1

2hk
(x− xk)2 −

(
yk
hk
− mkhk

6

)
+

yk+1

hk
− mk+1hk

6
(4)

Evaluating equation (4) at xk and simplifying the result yields:

s′k(xk) = −mk

3
hk −

mk+1

6
hk + dk, where dk =

yk+1 − yk
hk

(5)

Similarly, we can replace k by k − 1 in equation (4) to get the expression for
s′k−1(x) and evaluate it at xk to obtain

s′k−1(xk) =
mk

3
hk−1 +

mk−1

6
hk−1 + dk−1 (6)

Now using the continuity of derivatives and equations (5) and (6) gives an
important relation involving mk−1, mk and mk+1:

hk−1mk−1 + 2(hk−1 + hk)mk + hkmk+1 = uk (7)

where uk = 6(dk − dk−1) for k = 2, . . . , n − 1. Observe that the unknowns in
equation (7) are the desired values {mk}, and the other terms are constants
obtained by performing simple arithmetic with the data points {xk, yk}. There-
fore, in reality, system (7) is an underdetermined system of n−2 linear equations
involving n unknowns. Hence, two additional equations must be supplied. They
are used to eliminate m1 and mn. Consider the natural cubic spline strategy
where m1 and mn are given (= 0). The first equation (for k = 2) of system (7)
is:

2(h1 + h2)m2 + h2m3 = u2 − h1m1 (8)

and similarly, the last equation is:

hn−2mn−2 + 2(hn−2 + hn−1)mn−1 = un−1 − hn−1mn (9)

Equations (8) and (9) with (7) used for k = 3, 4, . . . , n−2 form a tridiagonal (n−
2)× (n−2) linear system HM = V involving the coefficients m2,m3, . . . ,mn−1:

b2 c2
a3 b3 c3

. . .

an−3 bn−2 cn−2
an−2 bn−1




m2

m3

...
mn−2
mn−1

 =


v2
v3
...

vn−2
vn−1


After the coefficients {mk} are determined, the spline coefficients a

(j)
k for sk(x)

are computed using the formulas

a
(0)
k = yk, a

(1)
k = dk −

hk
6

(2mk +mk+1), a
(2)
k =

mk

2
, a

(3)
k =

mk+1 −mk

6hk

14

Error analysis

For simplicity, we will again assume that

h2 = h3 = . . . = hn−1 = h (hk = xk+1 − xk)

For the not-a-knot method, we have

|f(x)− s(x)| / 5

384
||f (4)||∞ · h4

The “approximate” inequality is used because the interpolation error can be
slightly larger near the endpoints of the interval [a, b]. This is a very comparable
result with the (non-smooth) piecewise cubic polynomial method:

|f(x)− s(x)| ≤ 9

384
||f (4)||∞ · h4

Note though that the computation of the piecewise cubic method was very
local and simple (every interval could be independently evaluated) while the
computation of the coefficients of the cubic spline is more elaborate.

15

