
Polynomial, Lagrange, and Newton Interpolation

Mridul Aanjaneya

November 14, 2017

Interpolation

We are often interested in a certain function f(x), but despite the fact that f
may be defined over an entire interval of values [a, b] (which may be the entire
real line) we only know its precise value at select point x1, x2, . . . , xN .

select value
samples

the actual
function f(x)

There may be several good reasons why we could only have a limited number
of values for f(x), instead of its entire graph:

• Perhaps we do not have an analytic formula for f(x) because it is the
result of a complex process that is only observed experimentally. For
example, f(x) could correspond to a physical quantity (temperature, den-
sity, concentration, velocity, etc.) which varies over time in a laboratory
experiment. Instead of an explicit formula, we use a measurement device
to capture sample values of f at predetermined points in time.

1

• Or, perhaps we do have a formula for f(x), but this formula is not trivially
easy to evaluate. Consider for example:

f(x) = sin(x) or f(x) = ln(x) or f(x) =

∫ x

0

e−t
2

dt

Perhaps evaluating f(x) with such a formula is a very expensive oper-
ation and we want to consider a less expensive way to obtain a “crude
approximation”. In fact, in years when computers were not as ubiquitous
as today, trigonometric tables were very popular. For example:

Angle sin(θ) cos(θ)
.
44◦ 0.695 0.719
45◦ 0.707 0.707
46◦ 0.719 0.695
47◦ 0.731 0.682
.

If we were asked to approximate the value of sin(44.6◦), it would be natural
to consider deriving an estimate from these tabulated values, rather than
attempting to write an analytic expression for this quantity.

Interpolation methods attempt to answer questions about the value of f(x) at
points other than the ones it was sampled at. An obvious question would be to
ask what is an estimate for f(x∗) for a value x∗ different than any sample we have
collected; similar questions can be asked about the derivatives f ′(x∗), f ′′(x∗), . . .
at such locations.

The question of how to reconstruct a smooth function f(x) that agrees with
a number of collected sample values is not a straightforward one, especially
since there is more than one way to accomplish this task. First, let us introduce
some notation: let us write x1, x2, . . . , xN for the x-locations where f is being
sampled and denote the known value of f(x) at x = x1 as y1 = f(x1), at x = x2
as y2 = f(x2), etc. Graphically, we seek to reconstruct a function f(x), x ∈ [a, b]
such that the plot of f passes through the following points:

(x1, y1) , (x2, y2) , . . . , (xN , yN)

Here are some possible ways to do that:

• For every x, pick the xi closest to it, and set f(x) = yi

2

x1 x2 x3 x4

• Or, simply pick the value to the “left”:

x1 x2 x3 x4

3

• Try connecting every two horizontally neighboring points with a straight
line

x1 x2 x3 x4

• Or, try to find a smoother curve that connects them all . . .

x1 x2 x3 x4

4

It is not trivial to argue that any particular one of these alternatives is “bet-
ter”, without having some knowledge of the nature of f(x), or the purpose this
reconstructed function will be used for. For example:

• It may appear that the discontinuous approximation generated by the
“pick the closest sample” method is awkward and not as well-behaved.
However, the real function f(x) being sampled could have been just as
discontinuous to begin with, for example, if f(t) denoted the transaction
amount for the customer of a bank being served at time = t.

• Sometimes, we may know that the real f(x) is supposed to have some de-
gree of smoothness. For example, if f(t) is the position of a moving vehicle
in a highway, we would expect both f(t) and f ′(t) (velocity), possibly even
f ′′(t) (acceleration) to be continuous functions of time. In this case, if we
seek to estimate f ′(t) at a given time, we may prefer the piecewise-linear
reconstruction. If f ′′(t) is needed, the even smoother method might be
preferable.

Polynomial Interpolation

A commonly used approach is to use a properly crafted polynomial function

f(x) = Pn(x) = a0 + a1x+ a2x
2 + . . .+ an−1x

n−1 + anx
n

to interpolate the points (x0, y0), . . . , (xk, yk). Some benefits:

• Polynomials are relatively simple to evaluate. They can be evaluated
very efficiently using Horner’s method, also known as nested evaluation or
synthetic division:

Pn(x) = a0 + x(a1 + x(a2 + x(. . . (an−1 + xan) . . .)))

which requires only n additions and n multiplications. For example,

1− 4x+ 5x2 − 2x3 + 3x4 = 1 + x(−4 + x(5 + x(−2 + 3x)))

• We can easily compute derivatives P ′n,P ′′n if desired.

• Reasonably established procedure to determine the coefficients ai.

• Polynomial approximations are familiar from, e.g., Taylor series.

And some disadvantages:

• Fitting polynomials can be problematic, when

1. We have many data points (i.e., k is large), or

2. Some of the samples are too close together (i.e., |xi − xj | is small).

In the interest of simplicity (and for some other reasons), we try to find the most
basic, yet adequate, Pn(x) that interpolates (x0, y0), . . . , (xk, yk). For example,

• If k = 0 (only one data sample), a 0-degree polynomial (i.e., a constant
function) will be adequate.

5

x0

y0 P0(x)

• If k = 1, we have two points (x0, y0) and (x1, y1). A 0-degree polynomial
P0(x) = a0 will not always be able to pass through both points (unless
y0 = y1), but a 1-degree polynomial P1(x) = a0 + a1x always can.

(x0, y0)

(x1, y1)

y = y1 −
y1 − y0
x1 − x0

x1︸ ︷︷ ︸
a0

+
y1 − y0
x1 − x0︸ ︷︷ ︸

a1

x

6

These are not the only polynomials that accomplish the task, e.g., when k = 0,

...

...

... ...

or

7

The problem with using a degree higher than the minimum necessary is that:

• More than 1 solution becomes available, with the “right” one being un-
clear.

• Wildly varying curves become permissible, producing questionable ap-
proximations.

In fact, we can show that using a polynomial Pn(x) of degree n is the best
choice when interpolating n+1 points. In this case, the following properties are
assured:

• Existence: Such a polynomial always exists (assuming that all the xi’s
are different! It would be impossible for a function to pass through 2
points on the same vertical line). We will show this later, by explicitly
constructing such a function. For now, we can at least show that such a
task would have been impossible (in general) if we were only allowed to
use degree-(n− 1) polynomials. In fact, consider the points

(x0, y0 = 0), (x1, y1 = 0), . . . , (xn−1, yn−1 = 0), (xn, yn = 1)

Thus, if a degree-(n− 1) polynomial was able to interpolate these points,
we would have:

Pn−1(x0) = Pn−1(x1) = . . . = Pn−1(xn−1) = 0

Pn−1(x) can only equal zero at exactly n − 1 locations unless it is the
zero polynomial. Since Pn−1(x) is zero at n locations, we conclude that
Pn−1(x) ≡ 0. This is a contradiction as Pn−1(xn) 6= 0!

• Uniqueness: We can sketch a proof by contradiction. Assume that

Pn(x) = p0 + p1x+ . . .+ pnx
n

Qn(x) = q0 + q1x+ . . .+ qnx
n

both interpolate every (xi, yi), i.e., Pn(xi) = Qn(xi) = yi, for all 0 ≤ i ≤ n.
Define another n-degree polynomial

Rn(x) = Pn(x)−Qn(x) = r0 + r1x+ . . .+ rnx
n

Apparently, Rn(xi) = 0 for all 0 ≤ i ≤ n. From algebra, we know that
every polynomial of degree n has at most n real roots, unless it is the zero
polynomial, i.e., r0 = r1 = . . . = rn = 0. Since we have Rn(x) = 0 for
n+ 1 distinct values, we must have Rn(x) = 0⇒ Pn(x) = Qn(x)!

The most basic procedure to determine the coefficients a0, a1, . . . , an of the

8

interpolating polynomial Pn(x) is to write a linear system of equations as follows:

a0 + a1x0 + a2x
2
0 + . . .+ an−1x

n−1
0 + anx

n
0 = Pn(x0) = y0

a0 + a1x1 + a2x
2
1 + . . .+ an−1x

n−1
1 + anx

n
1 = Pn(x1) = y1

a0 + a1x2 + a2x
2
2 + . . .+ an−1x

n−1
2 + anx

n
2 = Pn(x2) = y2

...

a0 + a1xn + a2x
2
n + . . .+ an−1x

n−1
n + anx

n
n = Pn(xn) = yn

or, in matrix form:
1 x0 x20 . . . xn−10 xn0
1 x1 x21 . . . xn−11 xn1
1 x2 x22 . . . xn−12 xn2
...

...
...

...
...

...
1 xn x2n . . . xn−1n xnn


︸ ︷︷ ︸

V(n+1)×(n+1)


a0
a1
...
an


︸ ︷︷ ︸
a(n+1)

=


y0
y1
...
yn


︸ ︷︷ ︸
y(n+1)

The matrix V is called a Vandermonde matrix. The set of functions {1, x, x2, . . . , xn}
represent the monomial basis. We will see that V is non-singular, thus, we can
solve the system V ã = ỹ to obtain the coefficients ã = (a0, a1, . . . , an). Let’s
evaluate the merit and drawbacks of this approach:

• Cost to determine the polynomial Pn(x): very costly.

Since a dense (n + 1) × (n + 1) linear system has to be solved. This
will generally require time proportional to n3, making large interpolation
problems intractable. In addition, the Vandermonde matrix is notorious
for being challenging to solve (especially with Gaussian elimination) and
prone to large errors in the computed coefficients {ai}, when n is large
and/or xi ≈ xj .

• Cost to evaluate f(x) (x=arbitrary) if coefficients are known: very cheap.
Using Horner’s method:

a0 + a1x+ a2x
2 + . . . anx

n = a0 + x(a1 + x(a2 + x(. . . (an−1 + xan) . . .)))

• Availability of derivatives: very easy. For example,

P ′n(x) = a1 + 2a2x+ 3a3x
2 + . . .+ (n− 1)an−1x

n−2 + nanx
n−1

• Allows incremental interpolation: no!

This property examines if interpolating through (x0, y0), . . . , (xn, yn) is
easier if we already know a polynomial (of degree n− 1) that interpolates
through (x0, y0), . . . , (xn−1, yn−1). In our case, the system V ã = ỹ would
have to be solved from scratch for the n+ 1 data points.

9

To illustrate polynomial interpolation using the monomial basis, we will deter-
mine the polynomial of degree 2 interpolating the three data points (−2,−27),
(0,−1), (1, 0). In general, there is a unique polynomial

P2(x) = a0 + a1x+ a2x
2

Writing down the Vandermonde system for this data gives 1 −2 4
1 0 0
1 1 1

 a0
a1
a2

 =

 −27
−1
0


Solving this system by Gaussian elimination yields the solution ã = (−1, 5,−4)
so that the interpolating polynomial is

P2(x) = −1 + 5x− 4x2

Lagrange Interpolation

Lagrange interpolation is an alternative way to define Pn(x), without hav-
ing to solve expensive systems of equations. For a given set of n + 1 points
(x0, y0), (x1, y1), . . . , (xn, yn), define the Lagrange polynomials of degree-n l0(x),
l1(x), . . . , ln(x) as:

li(xj) =

{
1 if i = j
0 if i 6= j

Then, the interpolating polynomial is simply

Pn(x) = y0l0(x) + y1l1(x) + . . .+ ynln(x) =

n∑
i=0

yili(x)

Note that no solution of a linear system is required here. We just have to
explain what every li(x) looks like. Since li(x) is a degree-n polynomial, with
the n-roots x0, x1, x2, . . . , xi−1, xi+1, xi+2, . . . , xn, it must have the form

li(x) = Ci(x− x0)(x− x1) . . . (x− xi−1)(x− xi+1) . . . (x− xn)

= Ci

∏
j 6=i

(x− xj)

Now, we require that li(xi) = 1, thus

1 = Ci ·
∏
j 6=i

(xi − xj)⇒ Ci =
1∏

j 6=i(xi − xj)

Thus, for every i, we have

li(x) =
(x− x0)(x− x1) . . . (x− xi−1)(x− xi+1) . . . (x− xn)

(xi − x0)(xi − x1) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn)

=
∏
j 6=i

(x− xj)
(xi − xj)

10

Note: This result essentially proves existence of a polynomial interpolant of
degree n that passes through n + 1 data points. We can also use it to prove
that the Vandermonde matrix V is non-singular. If it were singular, a right
hand side ỹ = (y0, . . . , yn) would have existed such that V ã = ỹ would have no
solution, which is a contradiction!

Let’s use Lagrange interpolation to compute an interpolating polynomial to
the three data points (−2,−27), (0,−1), (1, 0).

P2(x) = −27
(x− 0)(x− 1)

(−2− 0)(−2− 1)
+ (−1)

(x− (−2))(x− 1)

(0− (−2))(0− 1)
+ 0

(x− (−2))(x− 0)

(1− (−2))(1− 0)

= −27
x(x− 1)

6
+

(x+ 2)(x− 1)

2
= −1 + 5x− 4x2

Recall form Lecture 8 that this is the same polynomial we computed using the
monomial basis!

Let us evaluate the same four quality metrics we saw before for the Vander-
monde matrix approach.

• Cost of determining Pn(x): very easy.

We are essentially able to write a formula for Pn(x) without solving any
systems. However, if we want to write Pn(x) = a0 + a1x+ . . .+ anx

n, the
cost of evaluating the ai’s would be very high! Each li(x) would need to
be expanded, leading to O(n2) operations for each li(x) implying O(n3)
operations for Pn(x).

• Cost of evaluating Pn(x) for an arbitrary x: significant.

We do not really need to compute the ai’s beforehand, if we only need
to evaluate Pn(x) at a select few locations. For each li(x) the evaluation
requires n subtractions and n multiplications, implying a total of O(n2)
operations (better than O(n3) for computing the ai’s).

• Availability of derivatives: not readily available.

Differentiating each li(x) (since P ′n(x) =
∑
yil
′
i(x)) is not trivial; the

above expression has n terms each with n− 1 products per term.

• Incremental interpolation: not accomodated.

Still, Lagrange interpolation is a good quality method if we can accept its limi-
tations.

Newton Interpolation

Newton interpolation is yet another alternative, which enables both efficient
evaluation and allows for incremental construction. Additionally, it allows both
the coefficients {ai} as well as the derivative P ′n(x) to be evaluated efficiently.

11

For a given set of data points (x0, y0), . . . , (xn, yn), the Newton basis functions
are given by

πj(x) = (x− x0)(x− x1) . . . (x− xj−1) =

j−1∏
k=1

(x− xk), j = 0, . . . , n

where we take the value of the product to be 1 when the limits make it vacuous.
In the Newton basis, a given polynomial has the form

Pn(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + . . .+ an−1(x− x0)(x− x1) . . . (x− xn−1)

From the definition, we see that πj(xi) = 0 for i < j, so that the basis matrix
A with aij = πj(xi) is lower triangular. To illustrate Newton interpolation,
we use it to determine the interpolating polynomial for the three data points
(−2,−27), (0,−1), (1, 0). With the Newton basis, we have the lower triangular
linear system 1 0 0

1 x1 − x0 0
1 x2 − x0 (x2 − x0)(x2 − x1)

 a0
a1
a2

 =

 y0
y1
y2


For the given data, this system becomes 1 0 0

1 2 0
1 3 3

 a0
a1
a2

 =

 −27
−1
0


whose solution is ã = (−27, 13,−4). Thus, the interpolating polynomial is

P2(x) = −27 + 13(x+ 2)− 4(x+ 2)x = −1 + 5x− 4x2

which is the same polynomial we computed earlier!

Incremental Construction

The Newton basis functions can be derived by considering the problem of build-
ing a polynomial interpolant incrementally as successive new data points are
added. Here is the basic idea:

• Step 0: Define a degree-0 polynomial P0(x) that just interpolates (x0, y0).
Obviously, we can achieve that by simply selecting

P0(x) = y0

• Step 1: Define a degree-1 polynomial P1(x) that now interpolates both
(x0, y0) and (x1, y1). We also want to take advantage of the previously
defined P0(x) by constructing P1 as

P1(x) = P0(x) +M1(x)

12

where M1(x) is a degree-1 polynomial and it needs to satisfy

P1(x0)︸ ︷︷ ︸
=y0

= P0(x0)︸ ︷︷ ︸
=y0

+M1(x0)⇒M1(x0) = 0

Thus, M1(x) = c1(x− x0). We can determine c1 using:

P1(x1) = P0(x1) + c1(x1 − x0)⇒ c1 =
P1(x1)− P0(x1)

x1 − x0
=
y1 − P0(x1)

x1 − x0

• Step 2: Now construct P2(x) which interpolates the three points (x0, y0),
(x1, y1), (x2, y2). Define it as:

P2(x) = P1(x) +M2(x)

where M2(x) is a degree-2 polynomial. Once again we observe that

P2(x0)︸ ︷︷ ︸
=y0

= P1(x0)︸ ︷︷ ︸
=y0

+ M2(x0)

P2(x1)︸ ︷︷ ︸
=y1

= P1(x1)︸ ︷︷ ︸
=y1

+ M2(x1)

⇒M2(x0) =M2(x1) = 0

Thus, M2(x) must have the form:

M2(x) = c2(x− x0)(x− x1)

Substituting x← x2, we get an expression for c2

y2 = P2(x2) = P1(x2) + c2(x2 − x0)(x2 − x1)

⇒ c2 =
y2 − P1(x2)

(x2 − x0)(x2 − x1)

• Step k: In the previous step, we constructed a degree-(k− 1) polynomial
that interpolates (x0, y0), . . . , (xk−1, yk−1). We will use this Pk−1(x) and
now define a degree-k polynomial Pk(x) such that all of (x0, y0), . . . , (xk, yk)
are interpolated. Again,

Pk(x) = Pk−1(x) +Mk(x)

where Mk(x) is a degree-k polynomial.

Now we have for any i ∈ {0, 1, . . . , k − 1}

Pk(xi)︸ ︷︷ ︸
=yi

= Pk−1(xi)︸ ︷︷ ︸
=yi

+Mk(xi)⇒Mk(xi) = 0

Thus, the degree-k polynomial Mk must have the form

Mk(x) = ck(x− x0) . . . (x− xk−1)

13

Substituting x← xk gives

yk = Pk(xk) = Pk−1(xk) + ck(xk − x0) . . . (xk − xk−1)

⇒ ck =
yk − Pk−1(xk)∏k−1

j=0 (xk − xj)

Every polynomial Mi(x) in this process is written as

Mi(x) = ciNi(x) where Ni(x) =

i−1∏
j=0

(x− xj)

After n steps, the interpolating polynomial Pn(x) is then written as:

Pn(x) = c0N0(x) + c1N1(x) + . . .+ cnNn(x)

where

N0(x) = 1

N1(x) = x− x0
N2(x) = (x− x0)(x− x1)

...

Nk(x) = (x− x0)(x− x1) . . . (x− xk−1)

These are the Newton polynomials (compare with the Lagrange polynomials
li(x)). Note that the xi’s are called the centers.

We illustrate the incremental Newton interpolation by building the Newton
interpolant incrementally as the new data points are added. We begin with
the first data point (x0, y0) = (−2,−27), which is interpolated by the constant
polynomial

P0(x) = y0 = −27

Incorporating the second data point (x1, y1) = (0,−1), we modify the previous
polynomial so that it interpolates the new data point as well:

P1(x) = P0(x) +M1(x) = P0(x) + c1(x− x0)

= P0(x) +
y1 − P0(x)

x1 − x0
(x− x0)

= −27 +
−1− (−27)

0− (−2)
(x− (−2))

= −27 + 13(x+ 2)

Finally, we incorporate the third data point (x2, y2) = (1, 0), modifying the

14

previous polynomial so that it interpolates the new data point as well:

P2(x) = P1(x) +M2(x) = P1(x) + c2(x− x0)(x− x1)

= P1(x) +
y2 − P1(x2)

(x2 − x0)(x2 − x1)
(x− x0)(x− x1)

= −27 + 13(x+ 2) +
0− 12

(1− (−2))(1− 0)
(x− (−2))(x− 0)

= −27 + 13(x+ 2)− 4(x+ 2)x

Divided Differences

So far, we saw two ways of computing the Newton interpolant, triangular matrix
and incremental interpolation. There is, however, another efficient and system-
atic way to compute them, called divided differences. A divided difference is a
function defined over a set of sequentially indexed centers, e.g.,

xi, xi+1, . . . , xi+j−1, xi+j

The divided difference of these values is denoted by:

f [xi, xi+1, . . . , xi+j−1, xi+j]

The value of this symbol is defined recursively as follows. For divided differences
with one argument,

f [xi] ≡ f(xi) = yi

With two arguments:

f [xi, xi+1] =
f [xi+1]− f [xi]

xi+1 − xi

With three:

f [xi, xi+1, xi+2] =
f [xi+1, xi+2]− f [xi, xi+1]

xi+2 − xi

With j + 1 arguments:

f [xi, xi+1, . . . , xi+j−1, xi+j] =
f [xi+1, . . . , xi+j]− f [xi, . . . , xi+j−1]

xi+j − xi

The fact that makes divided differences so useful is that f [xi, . . . , xi+j] can
be shown to be the coefficient of the highest power of x in a polynomial that
interpolates through

(xi, yi), (xi+1, yi+1), . . . , (xi+j−1, yi+j−1), (xi+j , yi+j)

15

Why is this so useful?

Remember, the polynomial that interpolates

(x0, y0), . . . , (xk, yk)

is

Pk(x) = Pk−1(x)︸ ︷︷ ︸
highest power=xk−1

+ ck(x− x0) . . . (x− xk−1)︸ ︷︷ ︸
=ckxk+lower powers

Thus, ck = f [x0, x1, x2, . . . , xk]! Or, in other words,

Pn(x) = f [x0]

+ f [x0, x1](x− x0)

+ f [x0, x1, x2](x− x0)(x− x1)

...

+ f [x0, x1, . . . , xn](x− x0) . . . (x− xn−1)

So, if we can quickly evaluate the divided differences, we have determined Pn(x)!
Let us see a specific example:

(x0, y0) = (−2,−27)

(x1, y1) = (0,−1)

(x2, y2) = (1, 0)

f [x0] = y0 = −27

f [x1] = y1 = −1

f [x2] = y2 = −0

f [x0, x1] =
f [x1]− f [x0]

x1 − x0
=
−1− (−27)

0− (−2)
= 13

f [x1, x2] =
f [x2]− f [x1]

x2 − x1
=

0− (−1)

1− 0
= 1

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
=

1− 13

1− (−2)
= −4

Thus,

P2(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1)

= −27 + 13(x+ 2)− 4(x+ 2)x

Divided differences are usually tabulated as follows:
The recursive definition can be implemented directly on the table as follows:

Y =
a− b
c− d

16

f [·] f [·, ·] f [·, ·, ·] . . .
x0 f [x0]
x1 f [x1] f [x0, x1]
x2 f [x2] f [x1, x2] f [x0, x1, x2]
x3 f [x3] f [x2, x3] f [x1, x2, x3] . . .
x4 f [x4] f [x3, x4] f [x2, x3, x4] . . .

a

b

Yc

d

xi’s yi’s

For example, for the sample set (x0, y0) = (−2,−27), (x1, y1) = (0,−1),
(x2, y2) = (1, 0),

xi’s yi’s
−2 −27
0 −1 13
1 0 1 −4

17

Easy evaluation

P4(x) = c0

+ c1(x− x0)

+ c2(x− x0)(x− x1)

+ c3(x− x0)(x− x1)(x− x2)

+ c4(x− x0)(x− x1)(x− x2)(x− x3)

= c0 + (x− x0)[c1 + (x− x1)[c2 + (x− x2)[c3 + (x− x3) c4︸︷︷︸
Q4(x)︸ ︷︷ ︸

Q3(x)

]

︸ ︷︷ ︸
Q2(x)

]

︸ ︷︷ ︸
Q1(x)

]

︸ ︷︷ ︸
Q0(x)

P4(x) = Q0(x)

Recursively: Define Qn(x) = cn. Then

Qn−1(x) = cn−1 + (x− xn−1)Qn(x)

The value of Pn(x) = Q0(x) can be evaluated (in linear time) by iterating this
recurrence n times. We also have

Qn−1(x) = cn−1 + (x− xn−1)Qn(x)

⇒ Q′n−1(x) = Qn(x) + (x− xn−1)Q′n(x)

Thus, once we have computed all the Q′ks, we can also compute all the deriva-
tives too! Ultimately, P ′n(x) = Q′0(x).

Let us evaluate Newton’s method, as we did with other methods:

• Cost of computing Pn(x): O(n2).

• Cost of evaluating Pn(x) for an arbitrary x: O(n).

This can be accelerated (similar to Horner’s method) using the recursive
scheme defined above.

• Availability of derivatives: yes, as discussed above.

• Allows for incremental interpolation: yes!

18

