
CS 323: Numerical Analysis and Computing

MIDTERM #1

Instructions: This is an open notes exam, i.e., you are allowed to consult any textbook,
your class notes, homeworks, or any of the handouts from us. You are not permitted to
use laptop computers, cell phones, tablets, or any other hand-held electronic devices.
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1. [24% = 4 questions × 6% each] MULTIPLE CHOICE SECTION. Circle or underline
the correct answer (or answers). No justification is required for your answer(s).

(a) Which of the following statements regarding the cost of methods for solving an
n× n linear system Ax = b are true?

i. The cost of computing the LU factorization is generally proportional to n2.

ii. The cost of backward substitution on a dense upper triangular matrix is

generally proportional to n2.

iii. If a matrix A has no more than 3 non-zero entries per row, the cost of each

iteration of the Jacobi method is proportional to n.

(b) If an n × n matrix A is poorly conditioned (i.e., it has a very large condition
number), then

i. Solving Ax = b would be difficult with LU decomposition or Gaussian elimina-
tion, but iterative methods (Jacobi, Gauss-Seidel) would not have a problem.

ii. Solving Ax = b accurately with iterative methods (Jacobi, Gauss-Seidel) would
be difficult, but LU decomposition with pivoting would not have a problem.

iii. Solving Ax = b accurately will be challenging regardless of the method we use.

(c) Consider the rectangular m× n matrix A (with m > n), and the vector b ∈ Rm. If
x is the least squares solution to Ax ≈ b, can we say that x is an actual solution to
Ax = b?

i. Yes, in fact Ax = b has many solutions and the least squares solution is the one
with the smallest L2-norm of the residual vector ‖r‖2.

ii. No, the system Ax = b will generally not have a solution. What we call the least
squares solution is the vector x with the smallest L2-norm of the error vector
‖x− xexact‖2.

iii. No, the system Ax = b will generally not have a solution. What we call the

least squares solution is the vector x with the smallest L2-norm of the residual

vector ‖b− Ax‖2.
(d) Which of the following methods can be used for solving the system Ax = b, where

A is a symmetric, diagonally dominant, square n× n matrix?

i. LU factorization with full pivoting.

ii. System of normal equations.

iii. Gauss-Seidel method.

iv. Jacobi method.

2



2. [18% = 3 questions × 6% each] SHORT ANSWER SECTION. Answer each of the
following questions in no more than 2-3 sentences.

(a) Consider the following matrix A whose LU factorization we wish to compute using
Gaussian elimination:

A =

 4 −8 1
6 5 7
0 −10 −3


What will be the initial pivot element if (no explanation required)

• No pivoting is used?
Answer: 4

• Partial pivoting is used?
Answer: 6

• Full pivoting is used?
Answer: −10

(b) State one defining property of a singular matrix A. Suppose that the linear system
Ax = b has two distinct solutions x and y. Use the property you gave to prove that
A must be singular.

Answer: A matrix A is singular when the system Ax = 0 has a solution other than
x = 0. If Ax = b and Ay = b, subtracting the two equations gives A(x − y) = 0.
Since x and y are two distinct vectors, x − y 6= 0, implying that the matrix is
singular.

(c) Mention one advantage of the Gauss-Seidel algorithm over the Jacobi algorithm
and one disadvantage.

• Advantage: Gauss-Seidel algorithm has a faster convergence rate compared to
the Jacobi algorithm.

• Disadvantage: Gauss-Seidel algorithm is difficult to parallelize compared to the
Jacobi algorithm.
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3. [14%] Consider the five points:

(x1, y1) = (−3,−1)

(x2, y2) = (−2, 1)

(x3, y3) = (0, 2)

(x4, y4) = (1, 3)

(x5, y5) = (3, 2)

(a) We want to determine a straight line y = c1x+c0 that approximates these points as
closely as possible, in the least squares sense. Write a least squares system Ax ≈ b
which can be used to determine the coefficients c1 and c0.

Answer: The least squares system is given below:


−3 1
−2 1
0 1
1 1
3 1


[
c1
c0

]
=


−1
1
2
3
2


(b) Solve this least squares system, using the method of normal equations.

Answer: The normal equations for the above system are given below:

[
23 −1
−1 5

] [
c1
c0

]
=

[
10
7

]
Solving this system of equations gives c1 = 0.5, c0 = 1.5.
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4. [18%] The general form of an iterative method for solving the system Ax = b has the
form

x(k) = Tx(k−1) + c

where the matrix T and the vector c are such that the equation x = Tx+c is equivalent
to the original system Ax = b.

(a) If x? is the exact solution of the system Ax = b, show that

x(k) − x? = T
(
x(k−1) − x?

)
Answer: The following two equations hold for x?, x(k) and x(k−1):

x(k) = Tx(k−1) + c

x? = Tx? + c

Subtracting the second equation from the first gives the required identity.

(b) If r(k) = b−Ax(k) is the residual vector after the kth iteration of the method, show
that

r(k) = ATA−1r(k−1)

Hint: Use the identity r(k) = −Ae(k), or equivalently e(k) = −A−1r(k). Here,
e(k) = x(k) − x? is the error vector after the kth iteration.

Answer: The identity in part (a) can be written in the equivalent form:

e(k) = Te(k−1)

Multiplying both sides of this equation by A gives,

r(k) = Ae(k) = ATe(k−1)

Now using the fact that e(k−1) = A−1r(k−1) gives the required identity.

(c) Show that

r(k) = AT kA−1r(0)

Answer: This can be proved by repeated applications of the identity in part (b).
For example:

r(k) = ATA−1rk−1 = ATA−1ATA−1rk−2

= AT 2A−1rk−2 = . . . = AT kA−1r(0)
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5. [26%] Consider the elimination matrix Mk = I −mke
T
k and its inverse Lk = I + mke

T
k

used in the LU decomposition process, where

mk = (0, . . . , 0,m
(k)
k+1, . . . ,m

(k)
n )T

and ek is the kth column of the identity matrix. Let P (ij) be the permutation matrix
that results from swapping the i-th and j-th rows (or columns) of the identity matrix.

(a) [6%] Show that if i, j > k then LkP
(ij) = P (ij)(I + P (ij)mke

T
k ).

(b) [10%] Recall that the matrix L resulting from performing Gaussian elimination with
partial pivoting is given by

L = P1L1 . . . Pn−1Ln−1

where the permutation matrix Pi permutes row i with some row i′ where i < i′.
Show that L can be rewritten as

L = P1 . . . Pn−1L
P
1 . . . LP

n−1

where LP
k = I + (Pn−1 . . . Pk+1mk)eTk .

(c) [10%] Show that LP
1 . . . LP

n−1 is lower triangular.

Answer:

(a) The matrix mke
T
k has non-zero elements only in the kth column in the positions

corresponding to rows (k + 1) through n. Additionally, mke
T
kP

(ij) is the result of
swapping the ith and jth columns of mke

T
k , which are both zero. Thus, mke

T
kP

(ij) =
mke

T
k . Using this result, we have

(I + mke
T
k )P (ij) = P (ij) + mke

T
kP

(ij)

= P (ij) + mke
T
k

= P (ij) + P (ij)P (ij)mke
T
k

= P (ij)(I + P (ij)mke
T
k )

The third equality follows because P (ij)P (ij) = I, the identity matrix.

(b) Let qk be a vector containing non-zero entries only in the positions (k + 1) through
n. Then, using part (a), we have

(I + qke
T
k )Pi = Pi(I + Piqke

T
k ) = Pi(I + q̂ke

T
k )

where the vector q̂k = Piqk also has non-zero entries in the positions (k+1) through
n. Consequently, in the product P1L1 . . . Pn−1Ln−1, we can “propagate” each per-
mutation matrix Pi (in increasing order of the index i) to the left of all matrices
Lk with k ≤ i, while changing each matrix Lk according to the equation above
(multiplying its second term with Pi from the left). For example,
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P1L1P2L2P3L3 = P1(I + m1e
T
1 )P2(I + m2e

T
2 )P3(I + m3e

T
3 )

= P1P2(I + P2m1e
T
1 )(I + m2e

T
2 )P3(I + m3e

T
3 )

= P1P2(I + P2m1e
T
1 )P3(I + P3m2e

T
2 )(I + m3e

T
3 )

= P1P2P3(I + P3P2m1e
T
1 )(I + P3m2e

T
2 )(I + m3e

T
3 )

= P1P2P3L
P
1 L

P
2 L

P
3

where LP
k = I + Pn−1 . . . Pk+1mke

T
k . For the complete solution, this argument can

be extended to arbitrary n.

(c) Each matrix LP
k can be written as LP

k = I + q̂ke
T
k , where q̂k = Pn−1 . . . Pk+1mk, like

mk, only has non-zero entries in the positions (k + 1) through n. Furthermore,

LP
1 L

P
2 . . . LP

n−1 = (I + q̂1e
T
1 )(I + q̂2e

T
2 ) . . . (I + q̂n−1e

T
n−1)

= I + q̂1e
T
1 + q̂2e

T
2 + . . . q̂n−1e

T
n−1

since eTi q̂j = 0 for i < j, causing all the cross-terms (q̂ie
T
i )(q̂je

T
j ) in the original

product to vanish (for i < j). Since each term q̂ie
T
i contributes non-zero entries

only below the diagonal, the entire matrix I + q̂1e
T
1 + q̂2e

T
2 + . . . q̂n−1e

T
n−1 is lower

triangular.
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