CS 323: Numerical Analysis and Computing

MIDTERM #1

Instructions: This is an **open notes** exam, i.e., you are allowed to consult any textbook, your class notes, homeworks, or any of the handouts from us. You are **not permitted** to use laptop computers, cell phones, tablets, or any other hand-held electronic devices.

Name	
NetID	

Part #1	
Part $#2$	
Part #3	
Part #4	
Part #5	
TOTAL	

- 1. $[24\% = 4 \text{ questions} \times 6\% \text{ each}]$ MULTIPLE CHOICE SECTION. Circle or underline the correct answer (or answers). No justification is required for your answer(s).
 - (a) Which of the following statements regarding the cost of methods for solving an $n \times n$ linear system Ax = b are true?
 - i. The cost of computing the LU factorization is generally proportional to n^2 .
 - ii. The cost of backward substitution on a dense upper triangular matrix is generally proportional to n^2 .
 - iii. If a matrix A has no more than 3 non-zero entries per row, the cost of each iteration of the Jacobi method is proportional to n.
 - (b) If an $n \times n$ matrix A is poorly conditioned (i.e., it has a very large condition number), then
 - i. Solving Ax = b would be difficult with LU decomposition or Gaussian elimination, but iterative methods (Jacobi, Gauss-Seidel) would not have a problem.
 - ii. Solving Ax = b accurately with iterative methods (Jacobi, Gauss-Seidel) would be difficult, but LU decomposition with pivoting would not have a problem.
 - iii. Solving Ax = b accurately will be challenging regardless of the method we use.
 - (c) Consider the rectangular $m \times n$ matrix A (with m > n), and the vector $b \in \mathbb{R}^m$. If x is the *least squares solution* to $Ax \approx b$, can we say that x is an actual solution to Ax = b?
 - i. Yes, in fact Ax = b has many solutions and the *least squares solution* is the one with the smallest L_2 -norm of the residual vector $||r||_2$.
 - ii. No, the system Ax = b will generally not have a solution. What we call the *least* squares solution is the vector x with the smallest L_2 -norm of the error vector $||x x_{exact}||_2$.
 - iii. No, the system Ax = b will generally not have a solution. What we call the *least squares solution* is the vector x with the smallest L_2 -norm of the residual vector $||b Ax||_2$.
 - (d) Which of the following methods can be used for solving the system Ax = b, where A is a symmetric, diagonally dominant, square $n \times n$ matrix?
 - i. LU factorization with full pivoting.
 - ii. System of normal equations.
 - iii. Gauss-Seidel method.
 - iv. Jacobi method.

- 2. $[18\% = 3 \text{ questions} \times 6\% \text{ each}]$ SHORT ANSWER SECTION. Answer each of the following questions in no more than 2-3 sentences.
 - (a) Consider the following matrix A whose LU factorization we wish to compute using Gaussian elimination:

$$A = \begin{bmatrix} 4 & -8 & 1 \\ 6 & 5 & 7 \\ 0 & -10 & -3 \end{bmatrix}$$

What will be the initial pivot element if (no explanation required)

- No pivoting is used?
- Partial pivoting is used?
- Full pivoting is used?

(b) State one defining property of a singular matrix A. Suppose that the linear system Ax = b has two distinct solutions x and y. Use the property you gave to prove that A must be singular.

(c) Mention one advantage of the Gauss-Seidel algorithm over the Jacobi algorithm and one disadvantage.

3. [14%] Consider the five points:

$$(x_1, y_1) = (-3, -1) (x_2, y_2) = (-2, 1) (x_3, y_3) = (0, 2) (x_4, y_4) = (1, 3) (x_5, y_5) = (3, 2)$$

- (a) We want to determine a straight line $y = c_1 x + c_0$ that approximates these points as closely as possible, in the least squares sense. Write a least squares system $Ax \approx b$ which can be used to determine the coefficients c_1 and c_0 .
- (b) Solve this least squares system, using the method of normal equations.

4. [18%] The general form of an iterative method for solving the system Ax = b has the form

$$x^{(k)} = Tx^{(k-1)} + c$$

where the matrix T and the vector c are such that the equation x = Tx + c is equivalent to the original system Ax = b.

(a) If x^* is the *exact* solution of the system Ax = b, show that

$$x^{(k)} - x^{\star} = T \left(x^{(k-1)} - x^{\star} \right)$$

(b) If $r^{(k)} = b - Ax^{(k)}$ is the residual vector after the k^{th} iteration of the method, show that

$$r^{(k)} = ATA^{-1}r^{(k-1)}$$

Hint: Use the identity $r^{(k)} = -Ae^{(k)}$, or equivalently $e^{(k)} = -A^{-1}r^{(k)}$. Here, $e^{(k)} = x^{(k)} - x^*$ is the *error vector* after the k^{th} iteration.

(c) Show that

$$r^{(k)} = AT^k A^{-1} r^{(0)}$$

5. [26%] Consider the elimination matrix $M_k = I - m_k e_k^T$ and its inverse $L_k = I + m_k e_k^T$ used in the *LU* decomposition process, where

$$m_k = (0, \dots, 0, m_{k+1}^{(k)}, \dots, m_n^{(k)})^T$$

and e_k is the kth column of the identity matrix. Let $P^{(ij)}$ be the permutation matrix that results from swapping the *i*-th and *j*-th rows (or columns) of the identity matrix.

- (a) [6%] Show that if i, j > k then $L_k P^{(ij)} = P^{(ij)} (I + P^{(ij)} m_k e_k^T)$.
- (b) [10%] Recall that the matrix L resulting from performing Gaussian elimination with partial pivoting is given by

$$L = P_1 L_1 \dots P_{n-1} L_{n-1}$$

where the permutation matrix P_i permutes row *i* with some row *i'* where i < i'. Show that *L* can be rewritten as

$$L = P_1 \dots P_{n-1} L_1^P \dots L_{n-1}^P$$

where $L_k^P = I + (P_{n-1} \dots P_{k+1} m_k) e_k^T$.

(c) [10%] Show that $L_1^P \dots L_{n-1}^P$ is lower triangular.