CS 323: Numerical Analysis and Computing
 MIDTERM \#1

Instructions: This is an open notes exam, i.e., you are allowed to consult any textbook, your class notes, homeworks, or any of the handouts from us. You are not permitted to use laptop computers, cell phones, tablets, or any other hand-held electronic devices.

Name	
NetID	

Part \#1	
Part \#2	
Part \#3	
Part \#4	
Part \#5	
TOTAL	

1. $[24 \%=4$ questions $\times 6 \%$ each $]$ MULTIPLE CHOICE SECTION. Circle or underline the correct answer (or answers). No justification is required for your answer(s).
(a) Which of the following statements regarding the cost of methods for solving an $n \times n$ linear system $A x=b$ are true?
i. The cost of computing the $L U$ factorization is generally proportional to n^{2}.
ii. The cost of backward substitution on a dense upper triangular matrix is generally proportional to n^{2}.
iii. If a matrix A has no more than 3 non-zero entries per row, the cost of each iteration of the Jacobi method is proportional to n.
(b) If an $n \times n$ matrix A is poorly conditioned (i.e., it has a very large condition number), then
i. Solving $A x=b$ would be difficult with $L U$ decomposition or Gaussian elimination, but iterative methods (Jacobi, Gauss-Seidel) would not have a problem.
ii. Solving $A x=b$ accurately with iterative methods (Jacobi, Gauss-Seidel) would be difficult, but $L U$ decomposition with pivoting would not have a problem.
iii. Solving $A x=b$ accurately will be challenging regardless of the method we use.
(c) Consider the rectangular $m \times n$ matrix A (with $m>n$), and the vector $b \in \mathbb{R}^{m}$. If x is the least squares solution to $A x \approx b$, can we say that x is an actual solution to $A x=b$?
i. Yes, in fact $A x=b$ has many solutions and the least squares solution is the one with the smallest L_{2}-norm of the residual vector $\|r\|_{2}$.
ii. No, the system $A x=b$ will generally not have a solution. What we call the least squares solution is the vector x with the smallest L_{2}-norm of the error vector $\left\|x-x_{\text {exact }}\right\|_{2}$.
iii. No, the system $A x=b$ will generally not have a solution. What we call the least squares solution is the vector x with the smallest L_{2}-norm of the residual vector $\|b-A x\|_{2}$.
(d) Which of the following methods can be used for solving the system $A x=b$, where A is a symmetric, diagonally dominant, square $n \times n$ matrix?
i. $L U$ factorization with full pivoting.
ii. System of normal equations.
iii. Gauss-Seidel method.
iv. Jacobi method.
2. $[18 \%=3$ questions $\times 6 \%$ each $]$ SHORT ANSWER SECTION. Answer each of the following questions in no more than 2-3 sentences.
(a) Consider the following matrix A whose $L U$ factorization we wish to compute using Gaussian elimination:

$$
A=\left[\begin{array}{ccc}
4 & -8 & 1 \\
6 & 5 & 7 \\
0 & -10 & -3
\end{array}\right]
$$

What will be the initial pivot element if (no explanation required)

- No pivoting is used?
- Partial pivoting is used?
- Full pivoting is used?
(b) State one defining property of a singular matrix A. Suppose that the linear system $A x=b$ has two distinct solutions x and y. Use the property you gave to prove that A must be singular.
(c) Mention one advantage of the Gauss-Seidel algorithm over the Jacobi algorithm and one disadvantage.

3. [14\%] Consider the five points:

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) & =(-3,-1) \\
\left(x_{2}, y_{2}\right) & =(-2,1) \\
\left(x_{3}, y_{3}\right) & =(0,2) \\
\left(x_{4}, y_{4}\right) & =(1,3) \\
\left(x_{5}, y_{5}\right) & =(3,2)
\end{aligned}
$$

(a) We want to determine a straight line $y=c_{1} x+c_{0}$ that approximates these points as closely as possible, in the least squares sense. Write a least squares system $A x \approx b$ which can be used to determine the coefficients c_{1} and c_{0}.
(b) Solve this least squares system, using the method of normal equations.
4. [18\%] The general form of an iterative method for solving the system $A x=b$ has the form

$$
x^{(k)}=T x^{(k-1)}+c
$$

where the matrix T and the vector c are such that the equation $x=T x+c$ is equivalent to the original system $A x=b$.
(a) If x^{\star} is the exact solution of the system $A x=b$, show that

$$
x^{(k)}-x^{\star}=T\left(x^{(k-1)}-x^{\star}\right)
$$

(b) If $r^{(k)}=b-A x^{(k)}$ is the residual vector after the $k^{t h}$ iteration of the method, show that

$$
r^{(k)}=A T A^{-1} r^{(k-1)}
$$

Hint: Use the identity $r^{(k)}=-A e^{(k)}$, or equivalently $e^{(k)}=-A^{-1} r^{(k)}$. Here, $e^{(k)}=x^{(k)}-x^{\star}$ is the error vector after the $k^{\text {th }}$ iteration.
(c) Show that

$$
r^{(k)}=A T^{k} A^{-1} r^{(0)}
$$

5. [26\%] Consider the elimination matrix $M_{k}=I-m_{k} e_{k}^{T}$ and its inverse $L_{k}=I+m_{k} e_{k}^{T}$ used in the $L U$ decomposition process, where

$$
m_{k}=\left(0, \ldots, 0, m_{k+1}^{(k)}, \ldots, m_{n}^{(k)}\right)^{T}
$$

and e_{k} is the k th column of the identity matrix. Let $P^{(i j)}$ be the permutation matrix that results from swapping the i-th and j-th rows (or columns) of the identity matrix.
(a) [6\%] Show that if $i, j>k$ then $L_{k} P^{(i j)}=P^{(i j)}\left(I+P^{(i j)} m_{k} e_{k}^{T}\right)$.
(b) $[10 \%]$ Recall that the matrix L resulting from performing Gaussian elimination with partial pivoting is given by

$$
L=P_{1} L_{1} \ldots P_{n-1} L_{n-1}
$$

where the permutation matrix P_{i} permutes row i with some row i^{\prime} where $i<i^{\prime}$. Show that L can be rewritten as

$$
L=P_{1} \ldots P_{n-1} L_{1}^{P} \ldots L_{n-1}^{P}
$$

where $L_{k}^{P}=I+\left(P_{n-1} \ldots P_{k+1} m_{k}\right) e_{k}^{T}$.
(c) $[10 \%]$ Show that $L_{1}^{P} \ldots L_{n-1}^{P}$ is lower triangular.

