
Introduction to Computer Graphics 
Lecture Notes 
3/4/2019  

Rotations 

1. Rotations are represented in 3x3 matrices. 9 numbers, but 3 are independent. 

a. Euler angles 

Pair of three angles relative to the axes 

Example:  

zyz – Refers to rotation angle about current frame. 

Rpy – Refers to rotation angle about a fixed frame 

b. Angle and Axis – You are given a general 3D vector V, and angle alpha 

We have seen that these representations have singularities, which means that the 

inverse problem cannot always be solved. 

2. Inverse problem – Find the three independent rotation parameters that take one point to 

another point in space. 

3. Unit Quaternions 

a. Stores four variables. 

b. The inverse problem can always be solved. 

c. The quaternion, Q = (Z,e), where Z is a variable and e is a vector. 

Z = cos(v/2), e = sin(v/2)r 

i. A quaternion is a rotation of Z degrees on the vector r. 

ii. v is the angle of rotation. 

iii. r is the axis of rotation. 

E = [ex] ,     ||r||
2 =1 = rx

2+ry
2+rz

2=1 

  [ey]   ||e||2 = ex
2 + ey

2 + ez
2 = sin2(v/2)(||r||2) = sin2(v/2) 

  [ez]       Z
2 = ||e||2 = cos2(v/2) + sin2(v/2) = 1 



Introduction to Computer Graphics 
Lecture Notes 
3/4/2019  

  Q = (Z,e), Z2+ex
2+ey

2+ez
2 = 1.  Unit quaternion 

We have four variable and three independent variables. Given these four numbers, if 

we want the rotation matrix corresponding to the quaternion, we use this formula. 

 

R(Z,e) = [ 2(Z2+ ex
2) -1  2(ex*ey – Z*ez) 2(ex*ez + Z*ey)] 

          [2(ex*ey + Z*ez)       2(Z2+ey2) - 1  2(ey*ez – Zex)  ] 

          [2(ex*ez – Z*ey)       2(ey*ez + Z*ex) 2(Z2 + ez2) -1 ] 

 

Lets look at the inverse problem using quaternions. 

     R = [r11 r12 r13],  Z = ½(sqrt(r11+r22+r33+1)) 

 [r21 r22 r23] 

 [r31 r32 r33]   

 Derivation: 

 r11 = 2(Z^2 +ex^2) -1}-> 2(Z^2 +ex^2 +Z^2 +ey^2 +Z^2 +ez^2) -3 

 r22 = 2(Z^2 +ey^2) -1}->  = 2(2Z^2 +1)-3 

 r33 = 2(Z^2 +ez^2) -1}-> = 4Z^2 +2-3 = 4Z^2-1 

 4Z^2 -1 = r11+r22+r33 

 Z^2 = ¼(r11+r22+r33+1) 

 Z = ½(sqrt(r11+r22+r33+1)) 

 

e =    [ sign(r32-r23)sqrt(r11-r22-r33+1)]  [ex] 

    1/2[sign(r13-r31)sqrt(r22-r33-r11+1)] == [ey] 

         [sign(r21-r12)sqrt(r33-r11-r22+1)]  [ez]  

There are no divisions, so this representation has no singularities. Always use quaternion 

representation for rotations. 



Introduction to Computer Graphics 
Lecture Notes 
3/4/2019  

**sign(x) = 1 for x>=0, sign(x)=-1 for x<0 

Q = (Z,e) = R(Z,e). 

R-1(Z,e) = Q-1(Z,e) = (Z,-e) 

RRT = I -> R-1 = RT 

4. Multiplying Rotation Matrices 

Q1(Z1,e1) = R1(Z1,e1) 

Q2(Z2,e2) = R2(Z2,e2) 

R1*R2 = R1R2, which is expensive, because of 3x3 representation. 

We want to calculate on four numbers to get the cumulative rotation. 

Important identity: Q1*Q2 = (Z1*Z2 – e1
T*e2, Z1*e1 +  Z2*e1 + e1xe1) 

Suppose Q2 = Q1
-1 

Q1*Q2 = Q1*Q1
-1 = I = (1,(0)), (0) is a vector 

Q1 = (Z,e), Q1
-1 = (Z,-e) 

Z1*Z2 – e1
T*e2 = Z2+eT*e = Z2 + ex

2+ey
2+ez

2 = 1 

Z1*e2 + Z2*e1 + e1xe2 = -Ze + Ze – exe = 0 

5. Looking at the code for the transformation 

// generate transformation matrix 
       glm::mat4 trans(1.0f); 
       trans=glm::translate(trans,glm::vec3(0.5f,-0.5f,0.0f)); 
        
trans=glm::rotate(trans,glm::radians((GLfloat)glfwGetTime()*50.0f),glm::vec3(0.0f
,0.0f,1.0f)); 
 
Why do we use 4x4 matrices instead of a 3x3 matrix for rotation and a 3x1 vector for 

translation? 



Introduction to Computer Graphics 
Lecture Notes 
3/4/2019  

6. Homogeneous Transformations 

 

 

 

 

 

 

 

i. Matrix-vector multiplication and vector-vector addition. 

 P^0 = O1
0 + R1

0*p1 this resorts to two different representations. 

ii. Rather than this, suppose we create ~p which is [p3x1
1], A1

0  =[R1,3x1
0 O1,3x1

0] 

                        [1     ]   [0T           1 ] 

          *0T = [0 0 0] 

The vertex shader has been using homogeneous transformations. 

#version 330 core 
Layout (location=0) in vec3 position; 
layout  (location=1) in vec3 color; 

 
out vec3 our_color; 

 
void main() 
{ 
    gl_Position=vec4(position,1.0f); 
    our_color=color; 
} 

A1
0 * ~p = [ R1

0 O1
0 ] [p1] =[R1

0P1 + O1
0]       = [p0] -> These are  

       [0T              1    ] [1 ]   [    1    ] 4x1    [1  ]      homogeneous coordinates 

Z0 

X0 Y0 

P0 

O1
0 

P1 

O1 

P 

X1 

Y1 

Z1 

Frame 0 

Frame 1 

O0 



Introduction to Computer Graphics 
Lecture Notes 
3/4/2019  

 We want to perform matrix-vector multiplication ^^ instead of matrix-vector 

multiplication and vector-vector addition (P^0 = O1^0 + R1^0*p^1) to save space and time 

complexity. 

iii. If we want to go from p0 to p1   

p0 = O1
0 + R1

0p1, R1
0^-1 = R1

0^T 

R1
0^-1p0 = R1

0^Tp0 = R1
0^TO1

0 + (R1
0^TR1

0p1) = R0^TO1
0 + p1 

➔ p1 = -R1
0^TO1

0+R1
0^Tp0 

➔ A0
1 = [R1

0^T   -R1
0^TO1

0 ][p0] = [p1] 

     [0T  1 ][1 ]     [1 ] 

       *[pn] = ~pn  

         [1 ]           

➔ ~p1 = A0
1A1

0~p1 

➔ A0
1A1

0 = I  

➔ A0
1 = A1

0^-1 

A0
1 != A1

0^T , but R0
1 = R1

0^T 

Augmentation removes orthogonality of that matrix. Multiply by the inverse 

and not the transpose.  


