
CS428 Graphics Lecture Monday 03/04/2019

Ian Moreno

March 5, 2019

1 Rotations

• NOTE: 3x3 matrices have 9 numbers but only 3 are independent

Euler Angles Have Singularities (Inverse problem cannot always be solved, however)

ZYZ Refers to rotation angle about current frame

RPY Refers to rotation angle about fixed frame

Angle And Axis A general 3D ~v and angle α

2 Unit Quaternions

• Using Quaternions, the inverse problem can always be solved.

• Unit Quaternions represented by 4 numbers

Q = (ζ, ~ε) , ζ = cos(v
2), ε = sin(v

2)~γ

v = angle of rotation, γ = axis of rotation

~ε =

εxεy
εz

Assume ~γ is a unit vector then ~ε = sin(v

2)~γ
||~γ||2 = 1

γ2x + γ2y + γ2x = 1

~ε = sin(v
2)~γ, ||~ε||2 = ε2x + ε2y + ε2z = sin2(v

2)(γ2x + γ2y + γ2z) = sin2(v
2)

ζ2 + ||~ε||2 = cos2(v
2) + sin2(v

2) = 1

Q = (ζ, ~ε) ζ2 + ε2x + ε2y + ε2z = 1 ← Unit Quaternion

1

2.1 Rotation Matrix With Quaternion

R(ζ, ~ε) =

2(ζ2 + ε2x)− 1 2(εxεy − ζεz 2(εxεz + ζεy)
2(εxεy + ζεz) 2(ζ2 + ε2y)− 1 2(εyεz − ζεx)
2(εxεz − ζεy) 2(εyεz + ζεx) 2(ζ2 + ε2z)− 1

(if you represent the rotation as a quaternion)

3 Inverse Problem: Construct rotation matrix
and convert it to a quaternion

R =

γ11 γ12 γ13
γ21 γ22 γ23
γ31 γ32 γ33

ζ = 1

2

√
γ11 + γ22 + γ33 + 1

~ε = 1
2

sin(γ32 − γ23)
√
γ11 − γ22 − γ33 + 1

sin(γ13 − γ31)
√
γ22 − γ33 − γ11 + 1

sin(γ21 − γ12)
√
γ33 − γ11 − γ22 + 1

 =

εxεy
εz

- Note: sin(x) = 1, for x >= 0, and sin(x) = −1, for x < 0

We always use quaternions in graphics pipeline

Q ≡ (ζ, ~ε) ≡ R(ζ, ~ε)
RRT = I → R−1 = RT

R−1(ζ, ~ε) ≡ Q−1(ζ, ~ε) ≡ (ζ,−~ε)

Q1(ζ1, ~ε1) ≡ R1(ζ1, ~ε1)
Q2 ζ2, ~ε2) ≡ R2(ζ2, ~ε2)

R1 ∗R2 ≡ R1R2

Q1 ∗Q2 ≡ (ζ1ζ2 − εT1 ε2), ζ1~ε2 + ζ2~ε1 + ~ε1 ∗ ~ε2)

Suppose Q2 ≡ Q−1
1 =⇒ Q+Q2 = Q ∗Q−1

1 = I = (1,~0)
Q ≡ (ζ, ~ε), Q−1 ≡ (ζ,−~ε)
So ζ1ζ2− εT1 ε2 = ζ2 + εT ε = ζ2 + ε2x + ε2y + ε2z = 1 (by definition of Quaternion)
ζ1~ε2 + ζ2~ε1 + ~ε1 ∗ ~ε2 = −ζ~ε+ ζ~ε− ~ε ∗ ~ε = 0

2

4 Homogeneous Transformations

p0 = O0
1 +R0

1P
1

Instead of using matrix vector multiplication and vector-vector addtition we
just use matrix-vector multiplication

See shader.vs in the Transformations lecture

P̂ =

[
P 1
[3x1]

1

]
[4x1]

, A0
1 =

R0
1[3x3] O0

1[3x1]

0T 1[1x1]
εz

[4x4]

, 0T =
[
0 0 0

]
[1x3]

P 0 = O0
1 +R0

1P
1

R0
1
−1

= R0T
1 =⇒ R0

1
−1
P 0 = R0T

1 P 0 = R0T
1 O0

1 + R0T
1 R0

1P1, R0T
1 R0

1P1 = P 1

R0T
1 P 0 = R0T

1 O0
1 + P 1 =⇒ P 1 = −R0T

1 O0
1 +R0T

1 P 0

A1
0 =

[
R0T

1 −R0T
1 O0

1

0T 1

]
∗
[
P 0

1

]
(P̂ 0)

=

[
P 1

1

]
(P̂ 1)

P̂ 1 = A1
0P̂

0, P̂ 0 = A0
1P̂

1 P̂ 1 = A1
0A

0
1P̂

0 =⇒ A1
0A

0
1 = I =⇒ A1

0 = A0
1
−1

A0
1 =

[
R0

1 O0
1

0T 1

]
, A0 =

[
R0T

1 −R0T
1 O0

1

0T 1

]
NOTE A1

0 6= A0T
1 but R1

0 = R0T
1

3

5 Manipulator Arm

4

