
Lecture #5 – OpenGL GLM

Homework #1
Due February 24 @ Midnight

If enough people don't finish, the deadline will be extended

 Problem 2 Explanation

 1

 2

Two lanes. Only one lane should be green and the other lane should be red. Two lanes can NOT
be green or red at the same time.

Ie) If lane 1 is green, and cars have been waiting in Lane 2, then when you press the
switch 2, Lane 1’s light should turn orange after a delay then turn red. Then, Lane 2
should switch from red to green.

Submit to Sakai one zipped file of…
 Problem 1

OpenGL Program
 Problem 2

Microcontroller Code
Video that explains the finished product & How your circuits work

Will be graded by how much effort you put into the homework

 Extra Credit – By putting extra effort into the homework
 Ie) For problem 1, having a more complex scene like adding a Ferris Wheel

Ie) For problem 2, having a more complex circuitry by adding a switch for emergency
service vehicles.

Switch 1

Switch 2

OpenGL GLM

A mathematics library that we can utilize to make things move, place object at certain coordinates, and
more.
We’ll be utilizing GLM for Transformation & 3D Replication & Camera Movement

void key_callback()
 Used to notify when a physical key is pressed or released or when it repeats

5.1 Transformation
Main Difference is between Lecture 4’s Main.cpp and Lecture 5’s Main.cpp
 Added lines in Lecture 5’s Main.cpp to create Transformation Matrix

glm::mat4 – Creates a 4x4 matrices

- Useful since this will allow us to transform (x,y,z,w) vertices
o If w == 1, then the vector (x,y,z,1) is a position in space.
o If w == 0, then the vector (x,y,z,0) is a direction.

glm::translate – Offsets the object to a different point
 Expects parameters to be the model matrix, vector where you want object to be translated

glm::rotate – Dynamically rotates an object by using time
 Expects parameters to be the model matrix, rotation angle, rotation axis
 Utilize glm::radians to transform angle float into radians

Then we’ll transfer the matrices to the vertex shader via
 glGetUniformLocation() & glUniformMatrix4fv()

5.2 Coordinates
Perspective Projection Matrix
 Utilized to transform vertex coordinates from view space to clip space

We’ve also have glEnable(GL_DEPTH_TEST), which allows depth comparison & depth buffer update

We’ve also created ten extra cubes that rotate around. This can be seen in the for() loop in the while()
loop.

5.3 Camera Movements
fov – Perspective field of view
yaw – One of the three aircraft principal axes

void do_movement()
 Utilized for camera controls with keyboard

Void scroll_callback()
 Utilized to notify when user scrolls, whether with a mouse wheel or touchpad gesture

