
Objective of the Day:
● Show 2 images and combine them essentially

○ 1 image is a face
○ 1 image is a texture
○ Can control the amount of overlap between the two

● Texture superimposed on the two triangles
● Because images are being used, he uses an open source library called SOIL

○ It is only for opening and manipulating images
○ Examples in class are only using open source libraries
○ SOIL is integrated in the Linux distribution itself

Discussion of Code:

● Mix_value is 0.2f ← Very important to note
● Initial set up is same as before in order to open the GL Window

○ All the code from Initial to the shader is essentially the same
○ Shader is changed a little bit

● Generate 2 texture tabs that we will later bind to the images on the triangle
● Generate 1st texture:

○ We do GenTextures: assigns texture to 1st image
○ Textures are 2D because the images are 2D
○ How to wrap the texture around the edges:
○ How to have the texture when there is no direct mapping
○ We are opening the image and doing the width and height of the image and

having it load as an RGB
■ Take the image and convert into a texture map that we will later use
■ GL_TEXTURE_2D for the image
■ glGenerateMipMap → A mipmap is a hierarchical image that you can use

at run time that determine how to run and load
○ After you will free image
○ After image is free then we will unbind the image
○ Bind the texture, specify the parameters, then unbind the texture

● Same code applies as is for the 2nd texture (the face)
● Specify how to map the images on the geometry

○ We have the positions and colors as previously done for each vertex
○ Now we do the textures for that as well
○ Indices array remains the same as we have 2 triangles
○ Buffer object remains the same except for the specification for the attributes

■ All of type float, and 3rd parameter is false, 4th parameter is of 8 because
we need 8 floating point values before going onto the next vertex

■ Position starts at 0, 3 floating point values
● Color starts at 1, 3 floating point values
● Texture starts at 2, 2 floating point values

○ The Display Loop

■ Use our shader program
■ Bind the texture

● activeTexture(GL_TEXTURE0)
○ First texture

■ Pass the mix_value to the shader
● Used to change its behavior on how to display the data

● Shader.vs
○ Layout

■ Position vector3
■ Color vector3
■ Texture vector2

○ Output
■ Color
■ Texture coordinate

○ For texture coordinate, we do x, and then 1 - y coordinate
● Shader.frag

○ Input:
■ Our_color //output of shader.vs
■ Texture coordinate //output of shader.vs

○ Output:
■ Color vector4

○ Uniform
■ Data type to allow the shader to communicate with the data
■ Lets the GPU talk directly to the main program without sending an array

object
○ For our texture 1, we do the TexCoord
○ For our texture 2, we do 1-TexCoord.x, TexCoord.y
○ Mix_value changes based off the input from the keyboard

● Window Behavior
○ Escape key remains the same
○ Up key:

■ We will add 1
■ If goes at 1 we will stay at one

○ Down key
■ We will subtract 1
■ If goes below 0, we will stay at 0

Elements of a Circuit:

● LED:
○ had the anode → connect to positive
○ Cathode → connect to negative

○
● Resistor:

○
● Transistor:

○
○ If the base is off, no current can flow
○ The current flows from top to bottom
○ Max voltage supply in Arduino is 5V
○ If you want a larger voltage supply, then use a transistor

■ It will supply a low current through the transistor
■ Collector can be anything you want

● Outer source, not from the Arduino
■ Main goal: Have large currents without frying the arduino

● Capacitor:

○

○

○ 2 Kinds of Capacitors that come with the kit, we will use the smaller one
■ 100nF is the one we will use

○ Slow down fluctuations in your circuit
○ Acts as a temporary power source
○ Purpose is to hold charge

■ Smaller capacitors hold smaller amount of charge
■ Larger capacitors hold larger amount of charge

● Switch

○
○ Four Legs with a Button on top that will close the circuit when pressed
○ Best way to put the switch on the breadboard is put it on the divider

■ May need to stretch the legs out a bit to fit

Assembly of the Circuit on the BreadBoard:

● Most of the time when operating with small elements it is best to use forceps
● Put the capacitor to the left of the switch

○

● Connect the ground supply to the same row as the switch(opposite of the board)

○
● Put the Resistor in parallel to the capacitor

○

● Connect the other leg of the switch to power supply(opposite of the board)

○
● 5V (blue wire) and Ground (yellow wire) from Arduino is connected to BreadBoard

(Opposite of what the board says on the top)

○

● Connect the LED to Ground

○
● Connect the 1k Ohm Resistance in series with the LED

○

● Connect LED to pin 12

○
● Connect the Switch to Pin 7

○

● Code for the Circuit
○ Set LED to OUTPUT
○ Set Button to INPUT
○ In the loop

■ If the button is high (pressed)
● Set the LED for High, delay for 500 (.5s) then set it back to low

● Behavior of the Code/Circuit
○ Press the button
○ The LED lights up for 0.5sec
○ The LED turns off

