Lecture 4
2/11/2019

Textures
	
Professor provided an example showing how to transpose two images using OpenGL: 
· Showed how to use arrow keys to interactively transition from one image to another. 
· The geometry used is the two triangles from the previous lecture with the textures superimposed.
· Using external opensource library SOIL (Simple OpenGL Image Library)
· #include <SOIL.h>
· Can be found using: apt-get SOIL (integrated with ubuntu repository package manager)
· Declare global variable GL_float mix_value = 0.2f
· Very important
· Rest of the setup for shaders is boilerplate from previous examples
· New stuff related to textures
· Generate two texture maps to bind to geometry
· texture1 and texture2
· set texture parameters, wrapping texture around edges of geometry
· set texture filtering
· load, create, and generate mipmaps
· convert image into texture map
· mipmap hierarchical representation of an image at various resolutions (for zooming in and out) for faster rendering at runtime
· SOIL_load_image
· glTexImage2d
· glGenerateMipmap
· SOIL_free_image_data
· glBindTexture
· use vertices[] to map the image onto the geometry 
· affects how the images are laid out
· two floating point values associated with each vertex and then a texture coordinate
· when adding attribute to vertex, need to be mindful of the spacing/offset of the data (in this example 8 floating-point values between vertex values)
· inside display group we have three new things that we should take note of:
· first call shader program
· then bind the texture
· active texture -> bind texture mapping to first texture and second texture
· pass mix_value to the shader, argument passed to shader to change its behavior on how it’s going to display the data
· the draw the triangles and nothing new is happening after
· Looking at the shader.vs
· Data is laid out with input, position, and color coordinate
· In the texture coordinate we take the x coordinate and 1-y coordinate
· Looking at the shader.frag
· Input of the shader.frag is the output of the shader.vs
· key_callback() in main.cpp 
· Enables use of keyboard to interact with the window at runtime


Arduino
	Onto some hardware examples:


LED:[image: ]Current


Resistor: [image: ]
· 1 kOhm resistor in our kit
Transistor: [image: ]Current

· b – base
· c – connector
· e – emitter
· allows Arduino to handle higher voltages, controls the flow of current


Capacitor: [image: ][image: ]

· Reduces/ slows down the fluctuations in current
· Holds a charge effectively
· Will use to implement a switch
· We should use the smaller capacitor in kit


Switch: [image: ]
· Use to control current on/off
· Put the switch on the breadboard straddling the divider
· [image: ]
· May have to stretch the four pins



In class example LED switch circuit:
[bookmark: _GoBack][image: ]

· The blue wire is 5v source
· Yellow wire is ground



[image: ]


Sketch code:

#define LED 12
#define BUTTON 7

void setup() {
	pinMode(LED, OUTPUT);
	pinMode(BUTTON, INPUT);
}

void loop() {
	if (digitalRead(BUTTON) == HIGH) {
	digitalWrite(LED, HIGH);
	delay(500);
	digitalWrite(LED, LOW);
}
}
image3.tiff




image4.tiff




image5.tiff




image6.tiff




image7.png




image8.png




image9.png




image10.png




image7.tiff




image8.jpeg




image13.png




image11.png
ceeee

ceeee





image1.tiff
Anod

Cathode
+ -





image2.tiff




