
CS 428 – Lecture 2
1/30/19

General Course Logistics
• Check out course website for new updates on rendering engines, code samples, and term

project guidelines, required software libraries, etc

• To request edits and/or changes to website, initiate a pull request on github

OpenGL Programming
• Recommended development tools:

o C++

o Ubuntu 18.04 (or 16.04)

o OpenGL 3.3

o If all else fails, try using iLab

machines or a VM (could be unstable)

• General OpenGL graphics pipeline

o The host program fills OpenGL-

managed memory buffers with arrays

of vertices

o These vertices are projected into

screen space, assembled into

triangles, and rasterized into pixel-

sized fragments

o Finally, the fragments are assigned

color values and drawn to the

framebuffer.

o Modern GPUs get their flexibility by

delegating the "project into screen

space" and "assign color values"

stages to uploadable programs called

shaders.

o Source: http://duriansoftware.com/joe/An-

intro-to-modern-OpenGL.-Chapter-1:-The-

Graphics-Pipeline.html

http://duriansoftware.com/joe/An-intro-to-modern-OpenGL.-Chapter-1:-The-Graphics-Pipeline.html
http://duriansoftware.com/joe/An-intro-to-modern-OpenGL.-Chapter-1:-The-Graphics-Pipeline.html
http://duriansoftware.com/joe/An-intro-to-modern-OpenGL.-Chapter-1:-The-Graphics-Pipeline.html

Code Example Walkthroughs
Follow along with the code sample posted at:

https://orionquest.github.io/CS428/lectures/lecture1.html

Window

The objective is to make an empty window of size 800x600 that we can close by pressing the ESC key

that looks as follows

• Window management library used: glfw3

o WindowHint:

▪ Config version, profile, resizability, etc

▪ Generally used in boilerplate code

o CreateWindow(width, height, title, monitor, share)

▪ Monitor = null → windowed, else set to monitor pointer to do full-screen

▪ Share = null → do not share resources, else set to window pointer to share

resources with another window.

o SetKeyCallback(window, key_callback)

▪ Key_callback is a void helper function that reads the key being activated as well

as what action (press, release, hold, etc) and compares to two constants

GLFW_KEY_ESCAPE and GLFW_PRESS

▪ If true, calls glfwSetWindowShouldClose(window, GL_TRUE) where GL_TRUE is

the OpenGL Boolean constant for true

o glfwSetWindowShouldClose(window, true/false)

▪ sets a Boolean flag property for window that indicates that the window should

be closed when possible

• Remember to do null pointer checks and sanity checks! The more time you spend making

various graceful exit and break points for your program, the less time you spend puzzling over

what went wrong when it comes to debugging

• Additional window management library used: glew

o SetFrameBuffer(window, &width, &height)

▪ Here we use pointers to variables instead to allow for window to have dynamic

size reference

▪ This allows us to do things like programmatically set size of our frame buffer as

well as programmatically get the size readings

https://orionquest.github.io/CS428/lectures/lecture1.html

• while(!glfwWindowShouldClose(window)) loop used to poll (continuously check until loop

condition is false) for key press

o Loop traps execution until window is told to close; good way to keep the operational

part of your code running continuously

o ClearColor sets color of “clear” pixels (i.e. background) to given color code

o SwapBuffers(window) helps clear visual glitches in dynamic animations

▪ Mechanics of how SwapBuffers works internally is not important at this time

and will be reviewed at a later point

The next two codes sample we will analyze are posted at:

https://orionquest.github.io/CS428/lectures/lecture2.html

Shader

The first objective is to make a window of size 800x600 that we can close by pressing the ESC key that

contains two triangles shaded two different colors that looks as follows:

• General boilerplate code/window creation code is reused from previous example

• Vertices array

o Type GLfloat – floating point number

o Arranged in rows of 3, xyz coordinates of each vertex of the four points of the two

triangles

o Note that all z coordinates are set to 0; OpenGL by default renders a 3d environment, so

we must specify that we want everything to be flat by giving our points a constant

height of 0 instead

• Index arrays

o Type GLuint – unsigned int

o Specify which indices of the vertices array to use to define each triangle

• GenBuffers initializes the vertex buffer object (VBO) and element buffer objects (EBO)

• Create vertex and fragment shader objects

o Call ShaderSource to explicitly set shader’s source code by reference to a constant

defined earlier instead of direct value for easier editing and/or abstraction to header

files

o Must be explicitly compiled by calling CompileShader due to shader’s functioning in the

GLShaderLanguage

o Shaders are created per shader property to be created

https://orionquest.github.io/CS428/lectures/lecture2.html

• Shader programs

o Created using CreateProgram()

o Attach shaders to program by using AttachShader

o Link the program by using LinkProgram

▪ Note that once you have attached the shaders to your program and linked it,

you can save time and space by freeing up the memory resources used to store

the shaders

• Create vertex array objects (VBO) for each triangle to pass info to GPU

• General pipeline for object initialization:

o Bind vertex array object using BindVertexArray → tells which vertex array to use

o Copy vertices/indices into VBO and EBO respectively using BindBuffer and BufferData

o Set vertex attribute pointers using VertexAttribPointer, EnableVertexAttribArray, and

BindVertexArray

▪ AttribPointer(index, size, type, normalized, stride, pointer)

• Index – where to start within VBO

• Size – number of vertices specified for this element

• Type – type of each vertex value

• Normalized – Boolean flag (GL_FALSE/GL_TRUE)

• Stride – size in bits to go to next vertex in memory

o Unbind VBO after done with use

• UseProgram, BindVertexArray, and DrawElements used to draw the actual pixels of the triangle

on the screen continuously until the window closes

Triangle

The second objective is to make a window of size 800x600 that we can close by pressing the ESC key

that contains one triangle that has red, green, and blue solid colors at the three corners, and a gradient

that blends the colors in between that looks as follows:

• Note that we begin to see modularized code instead of boilerplate code that is shifted to the

Shader.h header file

• class Shader

o store GLSL code in separate file

o read said file through input stream

o try-catch block to modularize error handling

o cast input stream into GLchar* (OpenGL string)

o run general shader program creation pipeline from earlier code examples

o also has a helper function void Use() which calls UseProgram(this->program)

▪ this is a self-reference C++ keyword

• This custom Shader class allows us to simply call a constructor with two arguments which are

files that determine the GLSL code (not shown here) and we have our shader programs

successfully created, attached, linked, and ready to use simply by calling Shader.Use()

• Notice that this time VAO is arranged in rows of 6, with 3 xyz coordinates for the position, and 3

RGB values for the color the vertex starts out with

o Adjust stride according to VAO layout

o Set pointer to correct place in memory inside the VAO

• For each entry in the array

o Set position attribute pointers

o Set color attribute pointers

