
3/25 Lecture

Rigid Body Dynamics

Recall that ~x(t)→position, ~v(t)→velocity, and m→ mass.

Linear momentum(P(t) = mv(t)
We know that x′(t) = v(t) and

F = ma = mv′(t) = d
d(t)P (t) = F .

These two equations describe linear motion.

Other information we know:
ω(t)→ angular velocity of body (3x1 vector)
q(t)→ orientation of body (unit quaternion, 4x1 vector)
I(t)→ inertia tensor (3x3 matrix). Our inertia tensor has a form for world space
and for object space.

In fact, Iworld(t) = R(t)IobjectR(t)T where R(t) is our rotation matrix.

Angular momentum L(t) = I(t)ω(t) → d
d(t)L(t) = L′(t) = τ (Applied

torque).

Knowing all of these equations is well and good, however we need a way to
be able to compute or approximate them. To do so, we need a system to dis-
cretize time. Recall that we accomplished this using our forward and backward
Euler equations.

We came up with:

P’(t) = F and Pn+1−Pn

∆t = F =⇒ Pn+1 = Pn + F∆t. (Forward Euler)

vn+1 = Pn+1

m and x′ = v → xn+1−xn

∆t = vn+1 =⇒ xn+1 = xn + ∆tvn+1.
(Backward Euler)

Finally, we also have for our angular momentum L′(t) = τ the following

(Forward Euler) Ln+1−Ln

∆t = τ =⇒ Ln+1 = Ln + ∆tτ

Recall that L = Iw and wn+1 = I−1Ln+1 where I−1 is the world inertia and
Ln+1 is the space tensor.
Note: I−1 = R(t)I−1

objR(t)T , and I−1
obj never changes.

Lastly, how do we compute qn+1(4x1 matrix)?
We know that q′(t) = 1/2ω(t)q(t) is equivalent to R′(t) = ω(t)∗R(t) where ω(t)∗

is the conjugate of ω(t).

1



First, we define ~ω = w1

w2

w3


Then, ω∗ =  0 −w3 w2

w3 0 −w1

−w3 w1 0



Notice that ω∗ is skew symmetric.

Aside: when we write ~ax~b = ~c, it is somewhat more intuitive in a linear al-
gebra perspective to think of this as [~ax][~b] = ~c ⇐⇒ ω∗R(t) = R′(t).

And so we have, R′(t) = ω∗R(t) =⇒ Rn+1−Rn

∆t = ω∗n+1Rn =⇒ Rn+1 =
Rn + ∆tω∗n+1Rn.

Additionally, Rn+1 ⇐⇒ qn+1 (unit quaternion). However, note that because
qn+1 is a unit quaternion, then this means that RTR = I and Rn is orthonormal.

Hence, before we can move from qn+1 to Rn+1, we have to orthonormalize
Rn+1 first.

Rigid Body Collision

For collision simulation, we have already existing engines at our disposal: Bullet
Physics (pybullet.org) and Open Dynamics Engine (ode.org).

There are two types of collisions we care about.

Resting contact/persistent collision: collision which occurs between an
object and its surface (think: gravity pushing down on you and with equal force
pushing you back up).
Separating (non-persistent) collision: collisions between objects in motion.

2


