3/25 Lecture

Rigid Body Dynamics

— —

Recall that z(t) —position, v(t) —velocity, and m — mass.

Linear momentum(P(t) = mo(¢)
We know that 2/(t) = v(t) and

F =ma=mv'(t) = %P(t) =F.
These two equations describe linear motion.

Other information we know:

w(t) — angular velocity of body (3x1 vector)

q(t)— orientation of body (unit quaternion, 4x1 vector)

I(t)— inertia tensor (3x3 matrix). Our inertia tensor has a form for world space
and for object space.

In fact, Iyoria(t) = R(t)[objectR(t)T where R(t) is our rotation matrix.

Angular momentum L(t) = I(t)w(t) — %L(t) = L'(t) = 7 (Applied
torque).

Knowing all of these equations is well and good, however we need a way to
be able to compute or approximate them. To do so, we need a system to dis-
cretize time. Recall that we accomplished this using our forward and backward
Euler equations.

We came up with:

n+1 n
P(t) = F and 225=L" — p — prtl = pn 4 FAt. (Forward Euler)
vl = PP and of = v o 2ioet o gl s gl o gn g At

m
(Backward Euler)
Finally, we also have for our angular momentum L’(¢) = 7 the following

(Forward Euler) anit*” =7 = L"" =L"+ Atr
Recall that L = I, and w"T! = I71L"*! where I~! is the world inertia and
L™t is the space tensor.

Note: I = R(t)Io_b;R(t)T, and IO_b;. never changes.

Lastly, how do we compute ¢"!(4x1 matrix)?

We know that ¢'(t) = 1/2w(t)q(t) is equivalent to R’'(t) = w(t)* R(t) where w(t)*
is the conjugate of w(t).



First, we define & =

wy
w2
w3
Then, w* =
0 — W3 (1)
w3 0 — w1
—Wws w1 0

Notice that w™* is skew symmetric.

Aside: when we write dxb = ¢, it is somewhat more intuitive in a linear al-

—

gebra perspective to think of this as [dz][b] = ¢ <= w*R(t) = R'(¢).

And so we have, R'(t) = w*R(t) = W = wntIRY = Rl =
R" + Atw 1R,

Additionally, R"*! <= ¢"*! (unit quaternion). However, note that because
¢! is a unit quaternion, then this means that R” R = I and R" is orthonormal.

Hence, before we can move from ¢"t! to R™t!, we have to orthonormalize
R first.

Rigid Body Collision

For collision simulation, we have already existing engines at our disposal: Bullet
Physics (pybullet.org) and Open Dynamics Engine (ode.org).

There are two types of collisions we care about.

Resting contact/persistent collision: collision which occurs between an
object and its surface (think: gravity pushing down on you and with equal force
pushing you back up).

Separating (non-persistent) collision: collisions between objects in motion.



