
Announcements: 
- Homework 2 due 3/31 

o 2 problems 
o You should include video description and code 
o You zip and then submit on sakai 
o 3 weeks to get the assignment done, no exceptions, if you have questions as 

them early. 
- Problem 1 

o Load a 3d model and display it on the screen 
§ Humanoid model 

• You can import a human model or robot model 
o Write controls to rotate the arms 
o Upper arms, lower arms (4 b/c of 2 arms) 
o Legs 

§ 8 controls total 
o You can find a 3d model or make one it is up to you 

- Problem 2 
o Intruder Alarm 

§ Measure distance with an ultrasonic sensor. If the distance falls below a 
threshold you should start to beep and if the intruder gets out of that 
safety radius the beeping should stop. 

§ If you mount the sensor on the servo motor to scan 180 degrees, this will 
be considered to be extra credit. More details can be found on the class 
website 

- Expect to have feedback on program proposal and homework 1 after break. 
I. Ultrasonic Sensor 

Here is the starting setup: 



Final setup: 

 
 
a. Basic code for Arduino: 

i. Globals 
1. Const int trigPin = 9; 

Const int echoPin =10; 
Long duration; 
Long distance; 

ii. Void setup 
pinMode(trigPin, OUTPUT) // pin 9 measures the distance 
pinMode(echoPin, INPUT) // pin 10 sends and responds to the 
signal 
Serial.begin(9600) // configures the serial monitor for the code 

iii. Void loop() 
digitalWrite(trigPin, LOW) 
delayMicroseconds(2) // these delays help to limit the noise and 
properly capture the communication 
digitalWrite(trigPin, HIGH) 
delayMicroseconds(10) 
digitalWrite(trigPin, LOW) 
duration = pulseIn(echoPin, HIGH) 
distance = duration*.034/2; 
Serial.print(“Distance: “) 
Serial.println(distance) 



1. The sensor has two lobes one sends and the next receives the 
time that it takes to get from one lobe to the next. This is then 
converted to the distance. Distance of going and distance of 
coming back is accounted for by dividing by 2. 

II. Ordinary Differential Equations 
a. All of graphics is to highlight something about reality. Ultimately you will be 

integrating some equations at some point in time. Most of graphics have the 
equations that we discuss in this class ingrained in it. 

𝑑𝑢
𝑑𝑡 = 𝑢̇ = 𝑢(𝑣 − 2) 
𝑑𝑢
𝑑𝑡 = 𝑣̇ = 𝑣(1 − 𝑢) 

𝑢(𝑡), 𝑣(𝑡)}	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑇𝑖𝑚𝑒 
****Note: The value of the derivative of u depends on v and vice versa. The 

input is going to be the value of u(0), v(0) the output is the u(t), v(t) for any t. u and v are 
simply variables, they can be replaced by other variables. 

b. If you think of u as x and v as y, they help to tell the trajectory of a point moving 
forward when we consider them on a plane  (u(0), v(0)). 

III. The Lotka-Volterra Model was used as an explanation of the predator-prey 
problem: 
 

 
 
 
 
 
 
 
 
 

i. This problem is essentially that in nature if there is a predator species and 
a prey species if there is too much prey and less predators, the predators 
will eat and flourish until they prey decrease. Eventually there will not be 
enough food for all of the predators and then they will die off giving the 
prey the ability to populate and their species increases. As one group 
increases the next decreases until there is a balance. 

ii. This represents the Lotka Volterra model. On planes these are shown as 
circles because they represent a cycle 

IV. Discretize Time 
a. We are going to take steps of fixed delta t 
b. We are going to adopt the Convention: 

𝑢8 = 	𝑢(𝑜)  𝑣8 = 𝑣(0) 
𝑢: = 𝑢	(△ 𝑡)   𝑣: = 𝑣	(△ 𝑡) 
𝑢< = 𝑢	(2 △ 𝑡)      𝑣< = 𝑣	(2 △ 𝑡) 



𝑢= = 𝑢	(𝑛 △ 𝑡)  𝑣= = 𝑣	(𝑛 △ 𝑡) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

𝑑𝑢
𝑑𝑡 = 	

𝛿𝑛	(𝑐ℎ𝑎𝑛𝑔𝑒	𝑜𝑓	𝑛)	
𝛿𝑡	(𝑡𝑖𝑚𝑒	𝑖𝑛	𝑤ℎ𝑖𝑐ℎ	𝑡ℎ𝑒	𝑡𝑖𝑚𝑒	𝑤𝑎𝑠	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) 

 
Our options  

1. EFG	EFHI

∆K
 (Backward differencing) 

2. EFLIG	EF

∆K
 (Forward differencing) 

a. Both 1 and 2 are 1st order accurate, meaning, if you make 
the denominator smaller it becomes more accurate. 

3. EFLIGEFHI

<∆K
 (Central differencing) 

a. 2nd order accurate 
 
V. Forward differencing (FW) 

a. 1st order 
𝑢̇ 	≡ 𝑢	(𝑣 − 2) 
𝑣̇ ≡ 𝑣(1 − 𝑢) 

𝑢=N: − 𝑢=

∆𝑡 = 	𝑢=(𝑣= − 2) 
𝑣=N: − 𝑣=

∆𝑡 = 	𝑣=(1 − 𝑢=) 
 
Where n is steps forward 

𝑢=N: = 	𝑢= +	∆𝑡	𝑢=(𝑣= − 2) 
𝑣=N: = 	𝑣= +	∆𝑡	𝑣=(1 − 𝑢=)	
(𝑢8, 𝑣8) → 	 (𝑢:, 𝑣:) → (𝑢<, 𝑣<)…	(𝑢=, 𝑣=) 

 
 



 
 
 

VI. Forward Differencing code 
a. The code itself says that you are starting at this point and then spiraling out. 

 

 
 
 
 
 

b. If you change the time steps the spiral gets smaller. The smaller the step the 
more accurate you become 

 
 



 
c. How far away you move in time is limited. 

VII. Backward differencing (BK)  
d. 1st order 
e. Your derivative changes how your tangent will look 
f. Your current value will depend on the values of the next time step 

EFLIGEF

∆K
= 	𝑢=N:(𝑣=N: − 2) … (1) 

RFLIGRF

∆K
= 	𝑣=N:(1 − 𝑢=N:) … (2) 

 
 Equation 

(1) 𝑢=N: = 	𝑢= +	∆𝑡	𝑢=N:(𝑣=N: − 2) 
				𝑢=N:{	1 −	∆𝑡	(𝑣=N: − 2)} = 	𝑢= 
𝑢=N: = 	 EF

:G	∆K(RFLIG<)
 …(3) 

 

Substitute 3 in 2, R
FLIG	RF

∆K
= 	𝑣=N:{ :G	EF

:G	∆K(RFLIG<)
} 

          = 𝑣=N:{:G	∆K	TR
FLIG<UG	EF

:G	∆K(RFLIG<)
} 

ð (𝑣=N: −	𝑣=){1 −	∆𝑡	(𝑣=N: − 2)} = 	∆𝑡	𝑣=N:{1 −	∆𝑡	(𝑣=N: − 2) −	𝑢=} 
 

 
 
 
 
 
 
 

You will see if you try the code for this you will see that a spiral goes inward. 
 
 
 

We know this quantity ahead of 
time 

Quadric equation is necessary to 
solve in vn+1 



 
 
 
 
 
 
 
 

VIII. Central differencing (Cent) 
g. Looking at the value in front of us  
h. 2nd order accurate  

IX. Symplectic Differencing 
i. The proper approach would be to use Symplectic differencing 
 

𝑢̇ = 𝑢(𝑣 − 2) 
𝑣̇ = 𝑣(1 − 𝑢) 

 
EFLIGEF

∆K
= 	𝑢=(𝑣=N: − 2)   𝑢=N:(𝑣= − 2) 

 
RFLIGRF

∆K
= 	𝑣=N:(1 − 𝑢=)     𝑣=(1 − 𝑢=N:) 

 
 
 
 
j. If you solve either method, you will get closer to the right answer. These are 

energy conserving 
k. Doing forward differencing for one variable and backward differencing for the 

next. 
 
******************You should try and code both backward & symplectic differencing 


